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Day-ahead and intraday electricity trading
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The day-ahead market for electricity
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The generation mix and electricity prices
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Perspective of a wind power plant manager
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Perspective of a wind power plant manager
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Introduction

Is it worth it?
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Introduction

Aim and objectives

Aim: Develop robust, reliable and interpretable DNN-based approaches for short-term
point, probabilistic and ensemble forecasting of electricity prices

© Identify the most common problems encountered in EPF ML research, present a set
of best practices and publish open access codes for well-performing benchmark

models
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Forecasting Electricity Prices Using Deep Neural
Networks: A Robust Hyper-Parameter
Selection Scheme

Grzegorz Marcjasz

Dp rtment of Op

e, Wroclaw University of Science and Technology,

check for
2020; Published: 4 September 2020 updates
Abstract: Deep neural networks are rapidly gaining popularity. However, their application requires
setting multiple hyper-parameters, and the performance relies strongly on this choice. We address
this issue and propose a robust ex-ante hyper-parameter selection procedure for the day-ahead
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Deep learning in EPF
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Introduction

Aim and objectives

@ Develop an interpretable DNN model for point EPF that outperforms
state-of-the-art benchmarks

International Journal of Forecasting 39 (2023) 884-900

Contents lists available at ScienceDirect

[P3]
International Journal of Forecasting

journal homepage: www.elsevier.com/locate/ijforecast n—
Neural basis expansion analysis with exogenous variables: )
Forecasting electricity prices with NBEATSx iy

Kin G. Olivares **, Cristian Challu?, Grzegorz Marcjasz °, Rafat Weron®,
Artur Dubrawski *

2 Auton Lab, School of Computer Science, Carnegie Mellon University, United States
® Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology, Poland

Grzegorz Marcjasz (WUST) Deep learning in EPF Wroctaw, 30.01.2024 9/37



Aim and objectives

© Construct distributional DNNs that directly yield predictive distributions and are
superior to state-of-the-art probabilistic models in terms of both statistical and
economic measures

@ Develop a decision support method that uses distributional DNNs to generate
trajectories of ID prices, then use it to construct profitable trading strategies

Energy Eeonomics 125 (2023) 106843
Contents liss available at ScienceDircct =
Trading on short-term path forecasts of intraday electricity prices.
Energy Economics [ P 4] Part II - Distributional Deep Neural Networks
. P5]
“Deparmentof Operations Resea of Science and Technology, 50-370 Wroclaw; Poland
L))
Distributional neural networks for electricity price forecasting k=
Grzegorz Marcjasz ", Mich jewski *, Rafat W rian Ziel ®
Abstract

ey 50370 Wrctow, Poland
We propose a novel electricity price forecasting model tailored to intraday markets with continuous trading. It is based on distri-
butional deep neural networks with Johnson SU distributed outputs. To demonstrate its usefulness, we introduce a realistic trading
strategy for the economic evaluation of ensemble forecasts. Our approach t
for four German TSOs and uses the intraday market to resolve imbalances re
economic evaluation is crucial and provide evidence that the better performin;
necessarily lead to higher trading profits.

fler day-ahead bidding. We argue that the
n terms of statistical error metrics do not

Keywords: Intraday electricity market, Probabilistic forecast, Path forecast, Prediction bands, Trading strategy. Neural networks

ty pr et rlorm:
oFthe-art benchmarks by over 7% in terms of the continuous ranked probabilty score and by 8% in terms

Grzegorz Marcjasz (WUST) Deep learning in EPF Wroctaw, 30.01.2024 10/37




O1: Problems, best practices and benchmarks
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O1: Problems, best practices and benchmarks

[P2] contributions: = ()

epftbolbox

@ a comprehensive review of
machine learning EPF
methods

() Issues 7 i% Pull requests

o identifies shortcomings in
the literature

@ proposes a set of guidelines

@ provides an open-access
DNN benchmark
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O2: Interpretable DNN model for point EPF
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O3: Distributional DNN and economic evaluation

[P4] contributions:
@ a DNN that outputs parameters of a distribution
@ tested on normal and a Johnson's SU distributions
o forecast accuracy improvement over point NN with QRA

model inputs hidden layer 1 hidden layer 2 distribution layer model output
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O3: Distributional DNN and economic evaluation
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O4: Decision support with DDNN-based path forecasts

[P5] contributions:

Contribution

Objective 4

@ an intraday market framework based on the DDNN [P4]
@ use of path forecasts in automated trading
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bl
O4: Decision support with DDNN-based path forecasts
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Key findings

NN-based models can outperform regression-based approaches
Forecast averaging is no longer an option, it is a necessity
NNs are flexible — they can model distributions efficiently

Hyper-parameter optimization is a crucial step, but automated methods work well

® 6 66 o6 o

Probabilistic and trajectory forecasts are useful tools in decision-making
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Replies to reviews

Replies to reviews

Grzegorz Marcjasz (WU Deep learning in EPF Wroctaw, 30.01.2024 19 /37



Replies to reviews Reviewer: prof. Dogan Keles

1. Justification of the methods chosen

The criteria for choosing a method:
@ thorough examination (w.r.t. the hyperparameters, inputs, results stability)
e comparability with the chosen benchmarks (more on that later)

o preference for incrementally added complexity
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2. Selection of input features

Choice of the input space based on exploratory studies:
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Reference: B. Uniejewski, J. Nowotarski and R. Weron (2016) Automated Variable Selection and Shrinkage for

Day-Ahead Electricity Price Forecasting, Energies 9 (621)
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3. Dismissal of cross-border factors

The cross-border factors:
@ growing importance in extreme (e.g., high wind) events

@ but less important under normal conditions (increasing integration of European
markets)

@ very complex to incorporate into the model correctly (flow-based market coupling)
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[P1] Optimal hyperparameter sets

@ NP and PJM: always sigmoid activation, GEFCom: elu chosen as well

@ NP: preference of Adam, GEFCom: mixed (AdaGrad, RMSProp, Adamax), PJM:
Adagrad and NAdam

@ Most of the runs: 500 epochs (2 of the best runs were 200 epochs)

@ NP: preference for larger batches
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RELICER NV Reviewer: prof. Grzegorz Dudek

[P1] Validation setting for NN and Lasso models
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[P1] Mitigating the risk of fitting parameters that work well only
on the validation sample

@ Choose the datasets carefully, look for structural changes, filter or transform the
data if needed

@ Use model ensembling (e.g. train on portions of the data)

@ Check the result variance in consecutive runs
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[P2] The state-of-the-art and the focus of the study

Study built upon the results from 2018 Applied

Energy article!:

@ DNN was the best of 204+ models tested

o lasso (and elastic net) were the best

statistical models

@ the proposed LEAR model offers a good

performance complexity tradeoff

o the literature focuses on the NN-based

approaches

1 J. Lago, F. De Ridder and B. De Schutter (2018) Forecasting spot electricity prices: Deep learning approaches and

Model
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empirical comparison of traditional algorithms, Applied Energy 221, 386-405
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[P2] The hyperparameter space

@ Input selection: 11 binary parameters — inclusion of groups of inputs

@ A “batch” evaluation during hyperparameter optimization (not a rolling window)

@ Bayesian optimization algorithm
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[P3] Sources of diversity of the base models

In the paper: random selection of the validation set and data augmentation (4 variants
in total)

Other possible methods:
@ running multiple independent hyperparameter optimization trials
@ running on subsets of data

@ augmenting the data using other, similar market (e.g. Belgian data for French
model)

Question: does a large ensemble of weak learners outperform a small ensemble of better
individual models?
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[P3] Speed of the model and optimization time

@ The NBEATS-X model: ca. 60% slower to train than the DNN.
@ Roughly two days for a hyperparameter optimization run. ..
@ ...but running in minutes when used day-to-day

@ The models are fast enough to be used in production

The computational complexity only affects the process of finding a well-performing
model
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[P3] NBEATSx model extension — basis functions

@ Using wavelets instead of harmonics would allow to represent a wider variety of
functions

@ Smoothing can be added to the exogenous variables and the non-interpretable
method
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[P4] Regularization of bias and neuron response

The main motivation: a separate regularization for the distribution parameter layers
The effect: most hyperparameter optimization trials did not use regularization

The models in the paper did not allow for the bias regularization

Input Hidden Hidden

Distribution Output
layer layer

layer layer

S distributions
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[P4] Increasing the complexity — the computational cost

@ The proposed method is quick enough for the use in daily operations
@ The optimization was not repeated and took a couple days per run (4 runs)

@ The profit depends strongly on the cost (trading, battery maintenance) and the
scale of operations

90% 80% 70% 60% 50% unl, o gian

Naive 7.26

LEAR-QRA 13.47 12.68 12.28 12.16 12.38 10.40
LEAR-QRM 13.13 12.57 12.31 12.21 12.53 10.83
DNN-QRA 13.77 12.26 11.54 11.39 11.37 10.41
DNN-QRM 13.69 11.88 11.57 11.36 11.46 10.56
DDNN-N-pEns 13.99 12.33 11.92 11.78 11.65 9.61
DDNN-N-gEns 13.33 11.93 11.82 11.74 11.64 9.68

DDNN-JSU-pEns 14.92 12.96 12.15 11.90 11.66 10.37
DDNN-JSU-qEns 14.04 12.45 12.05 12.02 11.79 10.60
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[P5] Importance of the exogenous inputs: forecasts

The models typically use the day-ahead forecasts of consumption and RES production:
@ this information is avaliable at the time of the auction
@ actuals can be used as a proxy (for historical data), but not forecasting
o lagged actuals — infeasible (weather)

@ the forecasts for most European markets are publicly available (e.g. on ENTSO-E
Transparency platform)
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1. Armstrong et al.: Golden rules of forecasting

Due to the nature of EPF, not all rules are applicable

The most relevant rules:

@ Use all important knowledge and information by selecting evidence-based methods
validated for the situation

Provide full disclosure for independent audits, replications, extensions

@ Use prior knowledge to specify variables, relationships, and effects
@ Combine forecasts from diverse evidence-based methods

@ Combine forecasts from dissimilar models
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1. Armstrong et al.: Golden rules of forecasting

The rules that are not applicable to (short-term) EPF:
@ Avoid bias by concealing the purpose of the forecasts
@ Most of the judgmental methods section

o Extrapolation methods section — modyfing long-term assumptions about trend and

seasonality

Grzegorz Marcjasz (WUST) Deep learning in EPF

Wroctaw, 30.01.2024

35/37



2. Model complexity and its performance

The DNN benefits mainly from:
@ better description of the non-linear exogenous inputs on the output

@ ability to model the data using complex dependencies (e.g. a factor that influences
the price up on certain occasions and down otherwise)
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Reviewer: prof. Michat Rubaszek
3. Fairness of comparing DNN with LASSO

© LASSO model is single-output, DNNs can be multi-output
o this property uses the LASSO automated feature selection better — we allow for 24
models tailored for a specific hour
e training single-output DNNs is possible, but (limited) tests suggest it is better to
train a single model (need for a lot of training samples)
© The DNN model is difficult to fine-tune, LASSO requires very little to work well

o LASSO offers automatic feature selection, and has only 1 hyper-parameter
o individual DNN runs are often worse or at par with LASSO — but DNNs can benefit
more from averaging

© DNNs, as a more complex model, should outperform LASSO - this is a good
verification of the correct implementation
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