18th Max Born Symposium

Rafał Weron

Energy price risk management

18th Max Born Symposium

Rafał Weron

Energy price risk management

- ... from
- a three year
- perspective

Contents

Risk Deregulation Markets Blackouts ■ Weather Spikes Conclusions

Energy price risk management සිසි

The possibility of incurring loss (or gain)

Wheel of misfortune

Enron: Problematic practices

Accounting: "Financial engineering" with SPEs hedging transactions creative accounting Leveraging financing operations Bad investments ♦ eg. power plant in Dabhol, India Enron's "culture" profits, more profits, even more profits

Enron: Special Purpose Entities (SPEs)

Europe

England & Wales, Scandinavia, Spain, The Netherlands, Germany, Poland, Austria, ...

The Americas

- ◆USA: CA, PA, NJ, CT, TX, ...
- ◆Chile, Argentina, ...
- Asia/Pacific basin
 - ◆Australia & New Zealand, ...

Liberalization

Privatization

Acquisitions by foreign companies

- Polish EC Kraków bought by French EdF
- ◆ German HEW, Bewag & VEAG bought by Swedish Vattenfall
- Mergers
 - ◆ PreussenElektra + Bayernwerke \rightarrow E.On
 - $\blacklozenge RWE + VEW \rightarrow RWE$
- New Actors
 - Marketers (qualified energy brokers)
- Increase in efficiency and standards of service
- Constant battle for the CUSTOMER

What do the customers have of it?

Higher quality of services

Choice of supplier

Lower prices (?)

Average electricity prices for industrial customers in Germany

Stages of liberalization

- **S-1**: State monopolies
- S-2: Declaration of competition
- **S-3**: Deregulation
- **S-4**: Tranquility
- S-5: Mergers and effects of market power
- **S-6**: Private monopolies

Opening of the EU market

Directive 96/92/EC of the European Parliament

common rules for the production, transmission and distribution of electricity

A new timetable for market opening (2001)			
2003	All EU companies free to choose electricity supplier		
2004	All EU companies free to choose gas supplier		
2005	All EU consumers free to choose electricity and gas suppliers		

Electricity market opening - current plans

Directorate General for Energy and Transport

European power exchanges

European power exchanges timeline

Europe: Concocting a third way

US: Energy restructuring at a crossroads

The making of California's electricity crisis

California crisis timeline

	Date	Event (Prices are per MWh)
	May-June 2000	ISO's real-time price reached \$750 ten times
	June 28	PX's day-ahead price (NP15) reached \$1,099
00	July 1	CAISO lowers the price cap from \$750 to \$500
20	Aug. 7	CAISO further reduced the price cap to \$250
	Nov. 1	FERC issued an order, proposing a "soft cap" of \$150
	Jan. 8, 2001	Gov. Gray Davis declared deregulation a "colossal
		and dangerous failure" and proposed state intervention
2	Jan. 11	CAISO issued first Stage 3 alert
20	Jan. 17-18	Rolling blackouts
	Apr. 6	Pacific Gas & Electric filed bankruptcy seeking court protection; reported \$8.9 bln losses

සිදුනි

-

Was demand higher ?

Source: ISO

Demand forecasting

Detecting seasonality

- correlation, spectral analysis
- Removing seasonality and ARMA modeling
 - differencing, moving average method, seasonal volatility technique, fitting a sum of sinusoids
- Seasonal ARIMA (SARIMA) modeling
- Detecting periodic correlation

◆ see poster by Ewa Broszkiewicz et al.

Periodic ARMA (PARMA) modeling

CalPX load: periodogram before and after seasonality reduction

Deseasonalized load returns can be modeled by ARMA time series

Signal Processing 82 (2002) 1903-1915

www.elsevier.com/locate/sigpro

Modeling electricity loads in California: ARMA models with hyperbolic noise

J. Nowicka-Zagrajek^{a,*,1}, R. Weron^{b,1}

ARMA models with hyperbolic noise cont.

 $f(x; \alpha, \beta, \delta, \mu) = \frac{\sqrt{\alpha^2 - \beta^2}}{2\alpha\delta K_1(\delta\sqrt{\alpha^2 - \beta^2})} \exp\{-\alpha\sqrt{\delta^2 + (x - \mu)^2} + \beta(x - \mu)\},$ (13)

where $\delta > 0$ is the scale parameter, $\mu \in R$ is the location parameter and $0 \leq |\beta| < \alpha$. The latter two parameters— α and β —determine the shape, with α being responsible for the steepness and β for the skewness.

Actual load and day-ahead outof-sample forecasts: 1-2.2001

Errors of the day-ahead out-ofsample forecasts: 1-2.2001

Errors of the day-ahead out-ofsample forecasts: 1-2.2001

Forecasting app	roach		
Error	CAISO	ARMA(1,6)	Adaptive ARMA
Ianuary 1–Febr	ruary 28		
MSE	208.34	304.14	318.50
MAE	10.52	9.86	9.87
MAPE (%)	1.7799	1.6642	1.6682
anuary 3–Febi	ruary 28		
MSE	190.28	89.00	88.36
MAE	10.08	7.39	7.31
MAPE (%)	1.7087	1.2401	1.2282

X

If it wasn't the demand then maybe it were the "gas pains"!

Natural gas prices

Electricity prices in 2000 - nominal and gas price adjusted

Other causes

- Precipitation in Columbia river basin lower by 40%
- Little generation investment in the last 10 years
- Execution of market power by the producers

Map courtesy of the Bonneville Power Administration.

bidding strategies, cooperative "games"

🖙 see poster by Agnieszka Wyłomańska

"That's why I never walk in front"

BLACKOUTS

System load (throughput)

- optimized to get the maximum out of the system
- high load means small operating margins
- has impact on interactions and component failures
- Tradeoff between load and risk of failure
 - ♦ at system level
 - for system components

2003 Blackout timeline

- 12:05:44 1:31:34 PM: 3 generator trips (shutdowns) causing flow pattern changes
- 2:02 PM: transmission line disconnects in SW Ohio due to fire under the line
- 3:05:41 3:41:33 PM: transmission lines disconnect between E Ohio and N Ohio; reasons unknown
- 3:45:33 4:08:58 PM: remaining transmission lines disconnect from E into N Ohio

2003 Blackout - the domino effect

- 4:08:58 4:10:27 PM: transmission lines into NW Ohio disconnect, and generation trips in central Michigan
- 4:10:00 4:10:38 PM: lines disconnect across Michigan and N Ohio, generation trips off line in N Michigan and N Ohio, and N Ohio separates from Pennsylvania
- Power immediately reversed direction and began flowing in a giant loop counterclockwise from PA to NY to Ontario and into Michigan

 4:10:40 – 4:10:44 PM: four transmission lines disconnect between Pennsylvania and New York

- 4:10:41 PM: line disconnects and generation trips in N Ohio
- 4:10:42 4:10:45 PM: transmission paths disconnect in N Ontario and New Jersey, isolating the NE portion of the Eastern Interconnection
- 4:10:46 4:10:55 PM: New York splits east-to-west; New England (except SW Connecticut) and the Maritimes separate from New York and remain intact

4:10:50 – 4:11:57 PM: Ontario separates from New York west of Niagara Falls and west of St. Lawrence; SW Connecticut separates

from New York and blacks out

- 4:13 PM: cascading sequence essentially complete
- More than 60 mln customers affected !

2003 Blackout

- the cascade effect

Modeling blackouts

- North American Electricity Reliability Council (NERC) data
 - Analyzed by Carreras, Dobson, Newman & Poole
 - ◆ 15 years of data (1984-98)
 - 427 blackouts
 - on average 28.5 per year, waiting time of 12 days
- Three measures of blackout size
 - energy unserved (MWh)
 - amount of power lost (MW)
 - number of customers affected

What is the distribution of blackout sizes ?

(c) 2003 Rafał Weron

Modeling blackouts cont.

There seems to be a critical loading at which

 sharp increase in average number of failures is observed

power tail distribution of blackout sizes forms

power system has
Self-Organizing
Criticality (SOC)
dynamics ?!
cascade models

Modeling blackouts cont.

Waiting times have exponential tails
blackouts can be modeled by a Poisson process
like the risk process in insurance
Extreme Value Theory

Power system is a network

- What type of a network should it be?
- Can we construct such networks?
- What is the critical loading?

WEATHER

- Important for energy at a range of time scalesDaily
 - ◆ Highly anomalous temperatures at a location
 - Widespread anomalous temperatures
- Multiple days
 - Hurricanes
 - Persistent heat events
- Seasonal

- Much colder winter than normal
- Excessively wet/dry winter in Scandinavia, Pacific Northwest

Role of weather in power sector

Electricity – Demand

- Weather is a measure of demand
 - Quasi-linear for non-extreme
 - "Hockey stick" for extreme heat

Electricity – Supply

- Impacts efficiency of power plants
- ◆Fuel for power supply: Hydro, Wind, Solar
- Severe weather can impact power transmission
 - Wind-induced power outages

Relationship of load to temperature - Cinergy 1996

Temperatures vs. system price

(c) 2003 Rafał Weron

power price vs. maximum PJM temperature

Anatomy of the 1998 Cinergy spike

- The setup: Federal sells call options for 50 \$/MWh; "Sleeve deal" provides credit guarantees
- End of June 1998: an early heat wave hits the Midwest; more than 20 power plants are off-line for maintenance or down due to storm damage
- June 22-24: prices ("into Cinergy") rise from 180 to 550 \$/MWh
- Marketers anticipating price squeeze buy up power bidding prices higher

Anatomy of the 1998 Cinergy spike cont.

- Options get called amid high prices at Cinergy
- Federal Energy defaults on call options; Springfield announces that it will not perform on these options
- On the night of June 24th a tornado damages a 900 MW nuclear power plant
- Prices continue to rise and reach 7500 \$/MWh in real-time trading; purchasers suffer large losses

July 1999 Cinergy price spike

Weather Situation

◆ Last part of July – hottest temperatures in several

years

 Widespread record highs

Heat indices:
115°F (Chicago)
118°F (South Ben)

Res

July 1999 Cinergy price spike cont.

- Energy demand
 - Record high demands in Ohio River area
- Reduced plant efficiency
 - High air/water temperatures caused generating units to run at lower efficiencies due to reduced effectiveness of cooling systems
- Other contributing energy factors
 - Strained transmission grids and flow cuts due to high energy demand
 - Market psychology

July 1999 Cinergy price spike - end results

- Power outages due to insufficient capacity
- Reduced power to interruptible customers
- Record high power prices

Hourly max:

USA Today, 2.08.1999 r.

Conclusions ... from a three year perspective

Power markets are different

- than other commodity or financial markets
- from each other
- New modeling, forecasting, pricing methods are needed
- "Blackout-free" design of power networks is necessary
- **There still is work for everyone in the room**