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Motivation 1-1

How can we model the dynamics of the electricity forward curve?
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Motivation 1-2

Motivation

[ The electricity forward curve is a complex object with a
non-trivial structure which exhibits seasonality and extreme
volatility at the short end

[J Our aim is to model and estimate forward curves for trading,
hedging and risk management

(1 In this context the electricity forward curve acts as a very
high-dimensional state variable

(] Practice requires a low-dimensional representation of the
curve
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Agenda

1. Motivation v/

2. The Nordic power market and the forward curves
3. The Dynamic Semiparametric Factor Model

4. Modeling and forecasting

5. Conclusions
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The Nordic power market

Wholesale power market structure
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The Nordic power market

Supply stack and the market cross

/Power production capacity in the Mordic countries
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The Nordic power market 2-3

Supply stack and the market cross cont.

/Power production capacity in the Mordic countries
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The Nordic power market 2-4

Supply stack and the market cross cont.

/Power production capacity in the Mordic countries
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The Nordic power market 2-5

Supply stack and the market cross cont.

Power production capacity in the Nordic countries
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The Nordic power market

Seasonality, extreme volatility and spikes
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The Nordic power market 2-7

Futures and forwards at Nord Pool
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The Nordic power market

The forward curve ...
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http://www.im.pwr.wroc.pl/~rweron/ppt/forwardcurves1999.avi

The Dynamic Semiparametric Factor Model 3-1

Agenda

1. Motivation v/

2. The Nordic power market and the forward curves v'
3. The Dynamic Semiparametric Factor Model

4. Modeling and forecasting

5. Conclusions
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The Dynamic Semiparametric Factor Model 3-2

Background

[0 The Dynamic Semiparametric Factor Model (DSFM) is a
principal component type approach

(1 Primary application: Dimension reduction

(I Originally introduced for modeling implied volatility surfaces
[Fengler et al. (2007)]

[] Can be seen as a combination of functional principal

component analysis (fPCA) and nonparametric curve
estimation
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The Dynamic Semiparametric Factor Model 3-3

The model
[J The Dynamic Semiparametric Factor Model has the form

Y: = mo(X¢) Zztlml Xe)+ et

where the data vector X; has J coordinates X; ; (observations

per day)
[ m(-) is a tuple of basis functions (mg, my,...,m;) "
0 Zy=(1,Z,,..., Zt’l_)T is a multivariate time series
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The Dynamic Semiparametric Factor Model 3-4

The model cont.

(1 The functions m; reflect the time invariant structure of Y;

(] m, is a nonparametric estimator of m; obtained directly from
the data points X; j, i.e. not from some estimated functions of
Xt j as in PCA (piecewise constant, smoothed forward curves)

(] The coefficients Z;; describe the dynamic behavior of the
forward curves

[J The whole complex system can be modeled through a typical
time series analysis of the estimates Z;
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The Dynamic Semiparametric Factor Model 3-5

Estimation

L K
ZIm(Xe) =D Zy Y aucte(Xe) = Z] Agp(X;)
=0 k=1
G () = (¥1,-..,%k)" is a vector of known expansion
functions (e.g. B-splines)
[0 A € REFDXK s 3 matrix of coefficients

[J the smoothing parameters L (dimension of the time series; we
use L =3,...,6) and K (number of series expansion functions;
K = 19 functions on 16 knots) have to be specified in advance
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The Dynamic Semiparametric Factor Model

Estimation cont.

The least squares estimators Z, = (Z:,o, - ?LL)T and

~

A= (5/7;()/:0 L.k_1. are obtained from
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Modeling and forecasting 4-1

Agenda

1. Motivation v/

2. The Nordic power market and the forward curves v'
3. The Dynamic Semiparametric Factor Model v*

4. Modeling and forecasting

5. Conclusions
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Modeling and forecasting 4-2

The data

(] Database of Nord Pool futures and forward prices from the
period Jan. 4, 1999 — May 23, 2002, i.e. 843 (business) days

(] A 500 day window is used for calibration

(] For each day, 1, 5, 10, 25 and 125 day-ahead forward curve
forecasts is computed

[J This leaves us with 800 — 500 — 125 = 218 days for which the
procedure (calibration + forecast) is repeated

(J Both DSFM and PCA models for various L (= 3,...,6) are
evaluated
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Modeling and forecasting 4-3

Sample DSMF and PCA fits ...
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... and their dynamics 4
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Modeling and forecasting 4-4
In-sample error measure

[J We compute an absolute in-sample error weighted by the
length of the delivery period for each contract

€r = Z [Model(Xzj) — Ye il - (|l
J

(] where X; ; are the observed maturities (mid-points of the
delivery periods) j =1,2,... for day t

[ Yy are the respective prices
[J I;; are the respective time intervals with a constant price Y; ;,

such that (; I, = (0, 2] years
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Modeling and forecasting

In-sample errors

In-sample errors
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Modeling and forecasting

In-sample error statistics
2.5, 25, 50, 75, 97.5 quantiles of the in-sample error
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Modeling and forecasting 4-7

Forecasting setup

(J For a 500 day window the DSFM and PCA models (with
L =3,...,6 factors) are calibrated

] For/=2,...,L, Z,l generally exhibit a seasonal pattern

I A sinusoidal function g(t) = A;sin(Byt + ;) is fitted and
removed yielding Z;5,...,7Z; 1

L
Yt’j = mO(Xt,j)‘FZZt’/m(XtJ)‘{'«St,j
1=1

= mo(X;) +Zgl m(Xtj) +Zztlm (Xtj) + €ty
=1
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Modeling and forecasting 4-8

Forecasting models
(J Random Walk (RW): forward (futures) prices from day t

L
Fony = Mo(Xexng) O Zoyy(Xesny) + et
=1

(J Trend update (STr for DSFM and PTr for PCA): the
sinusoidal trend gj is forecasted for / =2,...,L and added to
the forward price forecast

L

trhj = Mo(Xepny) + Z gi(t + h)my(Xeynj)
=2

L
+ Z Zt’/f/l\?/(xt+h,j) + &t
1=1
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Modeling and forecasting 4-9

Forecasting models cont.

[J Trend update from model (STr2, PTr2): Like ‘“Trend update’,
but without the error term

L

Fony = mo(Xesng) + > &i(t + h)my(Xerny)
1=
L

+ > Zyymy(Xerny)
=1
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Modeling and forecasting 4-10

Forecasting models cont.

() Full forecast with AR(2) time series (Sts, Pts): Additionally
includes AR(2) forecasts of all coefficient time series
Zt,la Zt,2a ceey Zt,L

L

Fong = mo(Xesng) + > &i(t + h)my(Xerny)
I—2
L

+ Z Zpmi(Xegn )
I=1
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Modeling and forecasting 4-11
One day-ahead forecasts: [ =3 vs. [ =14
x10° 1 day-ahead out-of-sample error (L=3) x10° 1 day-ahead out-of-sample error (L=4)
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Modeling and forecasting

5 day-ahead forecasts: [ =3 vs. L =4

x10° 5 day-ahead out-of-sample error (L=3) x10° 5 day-ahead out-of-sample error (L=4)
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Modeling and forecasting

25 day-ahead forecasts: [ =3 vs. [ =14

4 25 day-ahead out-of-sample error (L=3) 4 25 day-ahead out-of-sample error (L=4)
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Modeling and forecasting

4-14
125 day-ahead forecasts: [ =3 vs. L =4
x10° 125 day-ahead out-of-sample error (L=3) x10° 125 day-ahead out-of-sample error (L=4)
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Modeling and forecasting

4-15
Short vs. long term forecasts (L = 4)
x10° 1 day-ahead out-of-sample error (L=4) x10° 125 day-ahead out-of-sample error (L=4)
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Agenda

1. Motivation v/

2. The Nordic power market and the forward curves v'
3. The Dynamic Semiparametric Factor Model v*

4. Modeling and forecasting v/

5. Conclusions

DSFM: Modeling and forecasting electricity forward prices ——— ; 2%7



Conclusions 5-2

Conclusions

[J The electricity forward curve is a complex object with a
non-trivial structure

[J Like PCA, DSFM allows for dimension reduction

I It differs in that

» the fits are obtained in the local neighborhood of forward
price-maturity pairs for a given day

» curve estimation and dimension reduction is achieved in one
single step

(] DSFM offers superior in-sample performance
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Conclusions cont.

[ There is no clear winner in the out-of-sample forecasts

(] DSFM-based models are slightly better than their PCA-based
counterparts for short and long term forecasts and worse for
medium term predictions

[ The current forward curve (RW model) is on average the best
predictor of the curve in the next few days, it is inferior for
medium and long term forecasts

[J Larger number of basis functions (larger L) improves short
term forecasts but leads to increased variance of the longer
term forecasts
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Conclusions

Read more ...

Modeling and forecasting electricity loads and prices
A Statistical Approach
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