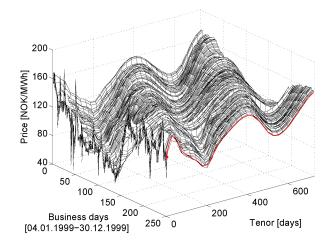
Modeling and forecasting electricity forward prices: A DSFM approach

Rafał Weron* Szymon Borak

Hugo Steinhaus Center, Wrocław University of Technology and

CASE-Center for Applied Statistics and Economics, Humboldt-Universität zu Berlin

How can we model the dynamics of the electricity forward curve?



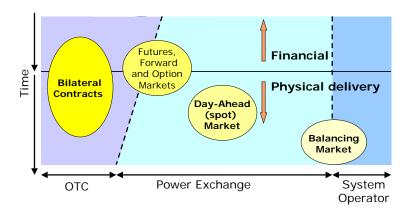
Motivation

- The electricity forward curve is a complex object with a non-trivial structure which exhibits seasonality and extreme volatility at the short end
- Our aim is to model and estimate forward curves for trading, hedging and risk management
- In this context the electricity forward curve acts as a very high-dimensional state variable
- Practice requires a low-dimensional representation of the curve

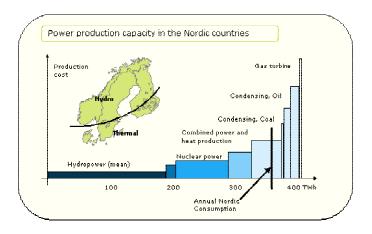
Agenda

- 1. Motivation ✓
- 2. The Nordic power market and the forward curves
- 3. The Dynamic Semiparametric Factor Model
- 4. Modeling and forecasting
- 5. Conclusions

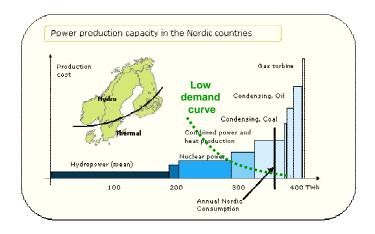
Wholesale power market structure



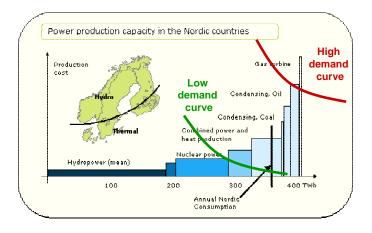
Supply stack and the market cross



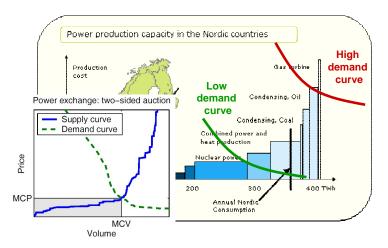
Supply stack and the market cross cont.



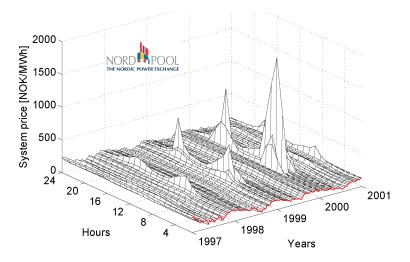
Supply stack and the market cross cont.



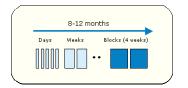
Supply stack and the market cross cont.



Seasonality, extreme volatility and spikes

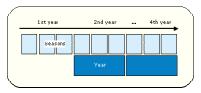


Futures and forwards at Nord Pool



Futures contracts

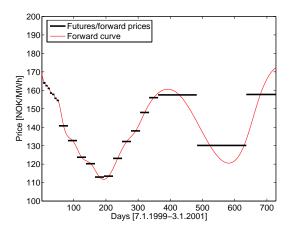
Day contracts (Dxx): 24 hours Week contracts (GUxx): 7 days Block contracts (GBxx): 4 weeks



Forward contracts

Winter 1 (FWV1xx): January - April Summer (FWSOxx): May - September Winter 2 (FWV2xx): October - December Year (FWYRxx)

The forward curve ...



... and its dynamics

Agenda

- 1. Motivation ✓
- 2. The Nordic power market and the forward curves \checkmark
- 3. The Dynamic Semiparametric Factor Model
- 4. Modeling and forecasting
- 5. Conclusions

Background

- Primary application: Dimension reduction
- Originally introduced for modeling implied volatility surfaces [Fengler et al. (2007)]
- Can be seen as a combination of functional principal component analysis (fPCA) and nonparametric curve estimation

The model

$$\mathbf{Y}_t = m_0(\mathbf{X}_t) + \sum_{l=1}^{L} Z_{t,l} m_l(\mathbf{X}_t) + \varepsilon_t$$

where the data vector \mathbf{X}_t has J coordinates $X_{t,j}$ (observations per day)

- oxdots $\mathbf{Z}_t = (1, Z_{t,1}, \dots, Z_{t,L})^{ op}$ is a multivariate time series

The model cont.

- \Box The functions m_l reflect the time invariant structure of \mathbf{Y}_t
- \widehat{m}_l is a nonparametric estimator of m_l obtained **directly** from the data points $X_{t,j}$, i.e. not from some estimated functions of $X_{t,j}$ as in PCA (piecewise constant, smoothed forward curves)
- $oxed{oxed}$ The coefficients $Z_{t,l}$ describe the dynamic behavior of the forward curves
- The whole complex system can be modeled through a typical time series analysis of the estimates $\widehat{Z}_{t,l}$

Estimation

$$\mathbf{Z}_t^{\top} \mathbf{m}(\mathbf{X}_t) = \sum_{l=0}^{L} Z_{t,l} \sum_{k=1}^{K} a_{l,k} \psi_k(\mathbf{X}_t) = \mathbf{Z}_t^{\top} \mathbf{A} \psi(\mathbf{X}_t)$$

- $\ \ \ \ \psi(\cdot) = (\psi_1, \dots, \psi_K)^{\top}$ is a vector of known expansion functions (e.g. B-splines)
- oxdot $\mathbf{A} \in \mathbb{R}^{(L+1) \times K}$ is a matrix of coefficients
- the smoothing parameters L (dimension of the time series; we use L = 3,...,6) and K (number of series expansion functions; K = 19 functions on 16 knots) have to be specified in advance

Estimation cont.

The least squares estimators $\widehat{\mathbf{Z}}_t = (\widehat{Z}_{t,0},...,\widehat{Z}_{t,L})^{\top}$ and $\widehat{\mathbf{A}} = (\widehat{a}_{l,k})_{l=0,...,L;k=1,...,K}$ are obtained from

$$\sum_{t=1}^{T} \sum_{j=1}^{J} \left\{ Y_{t,j} - \widehat{\mathbf{Z}}_{t}^{\top} \widehat{\mathbf{A}} \psi(X_{t,j}) \right\}^{2} = \min_{\widehat{\mathbf{Z}}_{t}, \widehat{\mathbf{A}}}$$

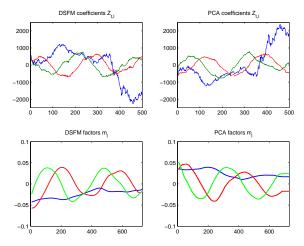
Agenda

- 1. Motivation ✓
- 2. The Nordic power market and the forward curves \checkmark
- 3. The Dynamic Semiparametric Factor Model \checkmark
- 4. Modeling and forecasting
- Conclusions

The data

- □ Database of Nord Pool futures and forward prices from the period Jan. 4, 1999 May 23, 2002, i.e. 843 (business) days
- □ A 500 day window is used for calibration
- For each day, 1, 5, 10, 25 and 125 day-ahead forward curve forecasts is computed
- $oxed{oxed}$ Both DSFM and PCA models for various $L \ (=3,\ldots,6)$ are evaluated

Sample DSMF and PCA fits ...



... and their dynamics

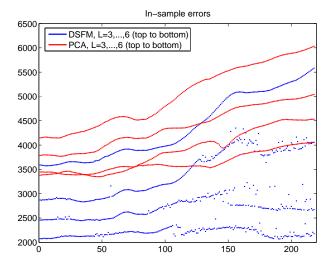
In-sample error measure

 We compute an absolute in-sample error weighted by the length of the delivery period for each contract

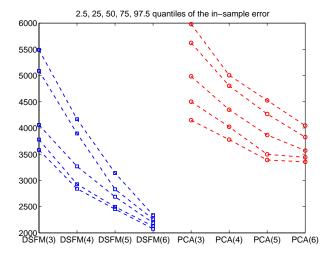
$$\epsilon_t = \sum_j |\mathsf{Model}(X_{t,j}) - Y_{t,j}| \cdot ||I_{t,j}||$$

- \odot where $X_{t,j}$ are the observed maturities (mid-points of the delivery periods) $j=1,2,\ldots$ for day t
- o $Y_{t,j}$ are the respective prices
- $□ I_{t,j}$ are the respective time intervals with a constant price $Y_{t,j}$, such that $\bigcup_i I_{t,j} = (0,2]$ years

In-sample errors



In-sample error statistics



Forecasting setup

- \Box For a 500 day window the DSFM and PCA models (with $L=3,\ldots,6$ factors) are calibrated
- $oxed{oxed}$ A sinusoidal function $g_I(t) = A_I \sin(B_I t + C_I)$ is fitted and removed yielding $\widetilde{Z}_{t,2}, \ldots, \widetilde{Z}_{t,L}$

$$Y_{t,j} = m_0(X_{t,j}) + \sum_{l=1}^{L} \widehat{Z}_{t,l} m(X_{t,j}) + \varepsilon_{t,j}$$

$$= m_0(X_{t,j}) + \sum_{l=2}^{L} g_l(t) m(X_{t,j}) + \sum_{l=1}^{L} \widetilde{Z}_{t,l} m(X_{t,j}) + \varepsilon_{t,j}$$

Forecasting models

oxdot Random Walk (**RW**): forward (futures) prices from day t

$$Y_{t+h,j}^* = \widehat{m}_0(X_{t+h,j}) + \sum_{l=1}^L \widehat{Z}_{t,l} \widehat{m}_l(X_{t+h,j}) + \varepsilon_t$$

oxdot Trend update (STr for DSFM and PTr for PCA): the sinusoidal trend g_l is forecasted for $l=2,\ldots,L$ and added to the forward price forecast

$$Y_{t+h,j}^* = \widehat{m}_0(X_{t+h,j}) + \sum_{l=2}^{L} g_l(t+h)\widehat{m}_l(X_{t+h,j}) + \sum_{l=1}^{L} \widetilde{Z}_{t,l}\widehat{m}_l(X_{t+h,j}) + \varepsilon_t$$

Forecasting models cont.

Trend update from model (STr2, PTr2): Like 'Trend update', but without the error term

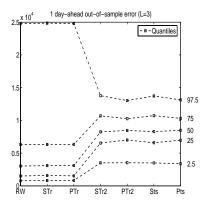
$$Y_{t+h,j}^* = \widehat{m}_0(X_{t+h,j}) + \sum_{l=2}^{L} g_l(t+h)\widehat{m}_l(X_{t+h,j}) + \sum_{l=1}^{L} \widetilde{Z}_{t,l}\widehat{m}_l(X_{t+h,j})$$

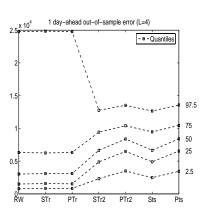
Forecasting models cont.

. Full forecast with AR(2) time series (**Sts**, **Pts**): Additionally includes AR(2) forecasts of all coefficient time series $\widehat{Z}_{t,1}$, $\widetilde{Z}_{t,2}$, . . . , $\widetilde{Z}_{t,L}$

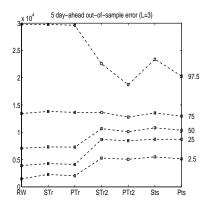
$$Y_{t+h,j}^* = \widehat{m}_0(X_{t+h,j}) + \sum_{l=2}^{L} g_l(t+h)\widehat{m}_l(X_{t+h,j}) + \sum_{l=1}^{L} \widetilde{Z}_{t+h,l}^* \widehat{m}_l(X_{t+h,j})$$

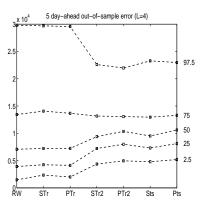
One day-ahead forecasts: L = 3 vs. L = 4



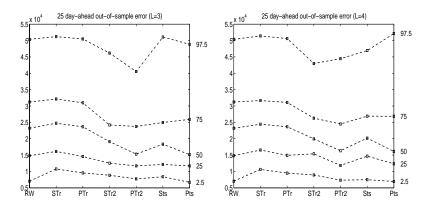


5 day-ahead forecasts: L=3 vs. L=4

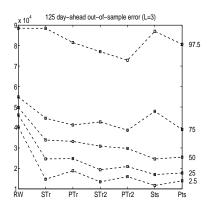


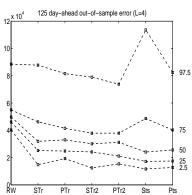


25 day-ahead forecasts: L = 3 vs. L = 4



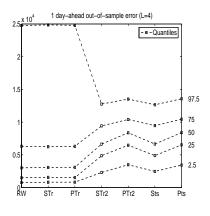
125 day-ahead forecasts: L = 3 vs. L = 4

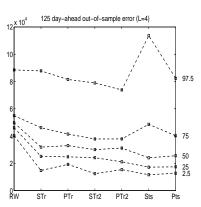




DSFM: Modeling and forecasting electricity forward prices

Short vs. long term forecasts (L = 4)





Agenda

- 1. Motivation ✓
- 2. The Nordic power market and the forward curves \checkmark
- 3. The Dynamic Semiparametric Factor Model \checkmark
- 4. Modeling and forecasting \checkmark
- 5. Conclusions

Conclusions — 5-2

Conclusions

- Like PCA, DSFM allows for dimension reduction
- It differs in that
 - the fits are obtained in the local neighborhood of forward price-maturity pairs for a given day
 - curve estimation and dimension reduction is achieved in one single step
- DSFM offers superior in-sample performance

Conclusions cont.

- DSFM-based models are slightly better than their PCA-based counterparts for short and long term forecasts and worse for medium term predictions
- The current forward curve (RW model) is on average the best predictor of the curve in the next few days, it is inferior for medium and long term forecasts
- Larger number of basis functions (larger L) improves short term forecasts but leads to increased variance of the longer term forecasts

Conclusions — 5-4

References

- Borak, S., Weron, R. (2007)

 Modeling and forecasting electricity forward prices using a Dynamic Semiparametric Factor Model, *Working Paper*.
 - Koekebakker, S., Ollmar, F. (2005)

 Forward curve dynamics in the Nordic electricity market, *Managerial Finance* 31: 74–95.
- Fengler, M., Härdle, W., Mammen, E. (2007)
 A semiparametric factor model for implied volatility surface dynamics, *Journal of Financial Econometrics* 5(2): 189–218. *See also*: SFB 649 Discussion Paper 2005-020.
- Borak, S., Härdle, W., Mammen, E., Park, B.U. (2007)
 Time Series Modelling with Semiparametric Factor Dynamics, SFB
 649 Discussion Paper 2007-023.

Conclusions — 5-5

Read more ...

