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 Risk management and derivatives pricing often 
require a model for spot electricity prices that is:

 Realistic
◦ Why would we want an unrealistic model?!

 Parsimonious
◦ Faster simulation, smaller calibration errors

 Statistically sound
◦ We can calibrate any model to any dataset …
◦ … but does it really fit the data? Does it make sense?
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 Reduced form models for the spot price
◦ Jump-diffusion (JD) models
◦ First generation Markov Regime-Switching (MRS) models
◦ Second generation MRS models

 Dealing with seasonality
 Empirical study
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 Typically the deseasonalized spot electricity price Xt is 
assumed to follow some kind of a jump-diffusion (JD) 
process:

 Clewlow & Strickland, 2000; Eydeland & Geman, 2000; Kaminski, 1999
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Generalized drift
(possibly mean 

reverting) Generalized volatility
(possibly 

heteroskedastic)

Pure jump process with given 
intensity and severity –

e.g. a compound Poisson 
process: dq(X,t) = XdNt



 After a jump the price is forced back to its normal level
◦ by mean reversion (MRJD)  
◦ by mean reversion coupled 

with downward jumps
 Deng 1999; Escribano et al., 2002; 

Geman & Roncoroni, 2006

◦ by a combination of mean 
reversions with different rates
 Benth et al., 2007

 Alternatively, a positive jump may be always followed 
by a negative jump of approximately the same size –
especially on the daily scale (MRD+J)

 Weron et al., 2004; Weron, 2008
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 What about periods of consecutive jumps?
◦ Grid congestion, outage

 Solution:
◦ Allow the process to ‘stay’ 

in the ‘jump regime’ with 
some probability
◦ Regime-switching

models
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 Assume that the switching mechanism can be governed by a latent 
random variable that follows a Markov chain with two (or more) 
possible states

 The regimes are only latent, not directly observable
 Estimation via EM (expectation–maximization) algorithm 

(Dempster et al., 1977; Hamilton, 1990; Kim, 1993) 
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A two-state regime model: Xt = {1,2}

Transition probabilities:

1 2q11 q22

1-q11

1-q22



 Ethier & Mount (1998) proposed a model with 2 regimes 
governed by AR(1) processes 
◦ Concluded that there was strong support for the existence of 

different means and variances in the two regimes
 Huisman & Mahieu (2003) proposed a model with 

3 regimes in which 
◦ The initial jump regime was immediately followed by the reversing 

regime and then moved back to the base regime
 Huisman & de Jong (2003) proposed a 2-regime model
◦ With a stable, mean-reverting AR(1) regime and 
◦ An independent spike (IS) regime modeled by a normal variable 

with a higher mean and variance
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 Bierbrauer et al. (2004), Weron et al. (2004) modified the 
IS 2-regime model
◦ Used log-normal and Pareto distributed spike regimes

 De Jong (2006) modified the same IS 2-regime model 
◦ Introduced autoregressive, Poisson driven spike regime dynamics

 Kosater & Mosler (2006) modified both 2-regime models 
(Ethier & Mount, 1998; Huisman & de Jong, 2003)
◦ Used a dummy variable to switch between two sets of parameters 

of the spike regime for business days and holidays
 Bierbrauer et al. (2007) proposed yet another 

modification of the IS 2-regime model
◦ Used exponentially distributed spikes
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 Some authors reported that the ‘expected spike 
sizes’ (≡ E(Yt,spike) − E(Yt,base)) were negative
◦ See e.g. De Jong (2006), Bierbrauer et al. (2007)
◦ … but were not considered as evidence for model 

misspecification
 Regime classification was not checked but …
◦ … the calibration scheme generally assigns all extreme 

prices to the spike regime
 The ‘sudden drops’ in the log-price are not interesting for 

price modeling and derivatives valuation
 They appear extreme only because of the log transform
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 Fundamental extensions to improve spike occurrence:
◦ Mount et al. (2006) proposed a 2-regime model with
 Two AR(1) regimes for log-prices and
 Transition probabilities dependent on the reserve margin

◦ Huisman (2008) extended the IS 2-regime model for log-prices
 Considered temperature dependent transition probabilities 

 Statistical refinements to improve goodness-of-fit:
◦ Weron (2008) suggested to fit prices, not log-prices 
◦ Janczura and Weron (2009) extended the IS 2-regime model 
 Introduced CIR-type dynamics for the base regime and
 Median-shifted spike regime distributions
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 Reduced form models for the spot price
 Dealing with seasonality
◦ Price spikes
◦ Short-term seasonality
◦ Long-term seasonality

 Empirical study

12



 Spot price Pt (denoted also by St) is typically modeled as 
a sum (or a product) of 
◦ A ‘deterministic’ (seasonal) component Λt and
◦ A purely stochastic component Xt

 A seasonal model for Λt is usually calibrated and removed 
from the data prior to estimating Xt
◦ Extreme observations may impact the estimate of Λt

 Possible solutions
◦ Use preprocessing – detect & replace price spikes with more 

‘normal’ values; add them back before estimating Xt

◦ Use methods ‘immune’ to outliers (quantiles, wavelets)
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 Differencing
◦ Simplest form: Xt = Pt – Pt-7

 Removing the mean or median week
Mo Tu We Th Fr Sa Su (week #1)
Mo Tu We Th Fr Sa Su (week #2)
... ...

 Moving average (MA) method
◦ Calculate mt = (Pt-3 + ... + Pt+3)/7
◦ Subtract the mean of deviations (Pk+7j - mk+7j) from Pt
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 Fitting piecewise constant functions (dummy 
variables) for each month

 Bhanot (2000), Haldrup & Nielsen (2006), Knittel & Roberts (2005), Lucia & Schwartz (2002)

 For each day of the week → corresponds to mean/median 
week or moving average method

 Can be used for modeling holidays

 Fitting (a sum of) sinusoids with trend
 Bierbrauer et al. (2007), 

Borovkova & Permana (2006), 
Cartea & Figueroa (2005), De Jong (2006), 
Geman & Roncoroni (2006), 
Lucia & Schwartz (2002), 
Pilipovic (1997), Weron (2006)

 Wavelet smoothing
 Weron et al. (2004), Trück et al. (2007), 

Weron (2008), Janczura & Weron (2009)
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 Sinusoid with linear trend 
 Λt = A⋅sin(2π(t+B)) + C + D⋅t
 t – time in years

 … with cubic trend
 Λt = A⋅sin(2π(t+B)) + C + D⋅t + E⋅t2

 … with linear trend 
and linear amplitude
 Λt = (A + F⋅t)⋅sin(2π(t+B)) + C + D⋅t

 … with cubic trend and linear amplitude
 Λt = (A + F⋅t)⋅sin(2π(t+B)) + C + D⋅t + E⋅t2
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EEX2 (2005-2008)



 Any signal (here: the spot price) can be built up as 
a sequence of projections onto 
◦ one father wavelet SJ and 
◦ a sequence of mother wavelets {Dj}

x(t) = SJ + DJ + DJ−1 + ... + D1

◦ where 2J is the maximum scale sustainable by the number of 
observations

◦ Sines are localized in frequency (characteristic scale)
◦ Wavelets are also localized in time (space) 
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 At the coarsest scale the signal can be estimated by SJ
◦ By adding a mother wavelet Dj of a lower scale 

j = J−1, J−2, …, we obtain a better 
estimate of the original signal 
→ lowpass filtering

 For daily data the S3, S5 and S8
approximations roughly 
correspond to 
◦ weekly (23 = 8 days),
◦ monthly (25 = 32 days) and
◦ annual (28 = 256 days) smoothing
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EEX2 (2005-2008)



 Piecewise constant functions 
◦ What about trends?

 Sinusoids
◦ How to predict the trend? 
◦ Model risk

 Wavelets
◦ Extrapolate the smoothed price?

 Forward prices
◦ Smooth interpolation of forward prices
◦ What about the far end? 
◦ What about risk premia?
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 Reduced form models for the spot price
 Dealing with seasonality
 Empirical study
◦ First generation MRS models
◦ Shifted spike regime distributions
◦ CIR base regime dynamics
◦ Testing goodness-of-fit
◦ 3-regime models
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 Mean daily (baseload) spot prices from EEX and PJM
◦ EEX1: 1.1.2001-2.1.2005 EEX2: 3.1.2005-3.1.2009

◦ PJM: 1.1.2001-2.1.2005

21



 Let the seasonal component Λt be composed of 
◦ A long-term seasonal trend Tt

 Changing climate/consumption conditions throughout the year and the 
long-term non-periodic structural changes

◦ And a weekly periodic part st

 First, Tt is estimated from daily spot prices Pt
◦ Using ‘annual’ wavelet smoothing (J=8)
 Fitting a sinusoid with cubic trend within a LS framework

 Next, st is removed by applying the MA method
 Finally, the deseasonalized prices, i.e. Pt – Tt – st, 

are shifted: min(new process) = min(Pt)
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 Log-normal (LN), for x > 0 Pareto (P), for x ≥ λ

◦ ML estimation straightforward The log-likelihood is increasing 
◦ Apply Gaussian mean and std with scale parameter λ

estimators to log-prices Since x≥λ, set λ=min(Xt)
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Prob. of staying in regime i

E(Xspike)
lower than 
E(Xbase) ?!

Prob. of 
being in 
regime i
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Vas-LN Vas-P
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 Almost all spikes are identified correctly
 The number of ‘sudden drops’ classified as 

spikes is much lower
 The unconditional probabilities of being in 

the spike regime P(R = 2) are 2x higher 
 But … some low prices are still classified 

as spikes



 Perhaps spike distributions should assign zero 
probability to prices below a certain quantile

 Let m = median(Xt)
◦ Shifted log-normal (SLN), for x > m

◦ Shifted Pareto (SP), for x > λ ≥ m
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E(X2)=3.33 < E(X1)=3.42 !!!
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E(X2)=30.3 > E(X1)=41.6



 When fitting MRS models with shifted spike 
distributions
◦ Practically all spikes are identified correctly 
◦ There are no ‘sudden drops’ classified as spikes 

 This suggests that the shifted distributions are more 
suitable for the spikes 
◦ But … there are clusters 

of ‘normal’ prices 
classified as spikes 
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Vas-SLN



 Perhaps different dynamics should be used 
for the base regime

 Introduce heteroskedasticity (γ≠0)

 For γ=0, Vasicek MRD process (Vasicek, 1977)
 For γ=0.5, CIR square root process (Cox, Ingersoll, Ross, 1985)
 For γ=1, BS process (Brennan, Schwartz, 1980)
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 Testing the goodness-of-fit for processes is not 
straightforward

 We can 
◦ Test the marginal distributions using an EDF-type test, like 

the Kolmogorov-Smirnov (K-S) test 
 … but
◦ The K-S test cannot be applied directly …
◦ In the considered models neither the prices themselves nor 

their differences or returns are i.i.d.
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 Data is split into 2 subsets (3 for the 3-regime model)
◦ Spikes, i.e. prices with probability P(Rtt= 2) > 0.5
 Price drops, i.e. prices with probability P(Rtt= 3) > 0.5

◦ The base regime, i.e. all remaining prices
 Discretization of the base regime dynamics:

◦ Where γ = 0 for Vasicek and γ = 0.5 for CIR models
 … for dt = 1 leads to:

◦ Where εt’s are i.i.d. Gaussian random variables
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 Applying the above transformation to base regime 
data we obtain 2 (or 3) i.i.d. samples: 
◦ fS-distributed, e.g. lognormal or Pareto, for the spike regime
 fD-distributed, e.g. lognormal, for the drop regime
◦ And Gaussian for 

the base regime
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 Combining these samples yields 
◦ A sample of independent variables with the distribution 

being a mixture of 2 (or 3) laws: 
 fS, (fD,) and Gaussian

 The probability that a given price Xt comes from 
◦ The spike distribution is equal to P(Rt = 2)
 The price drop distribution is equal to P(Rt = 3)
◦ The Gaussian law is equal to P(Rt = 1)

 We perform the K-S test for 
◦ The subsets
◦ And the whole sample
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 When fitting MRS models with CIR base dynamics 
◦ Practically all spikes are identified correctly 
◦ There are no clusters of wrongly identified spikes 

 Compared to Vasicek dynamics the CIR model yields
◦ Fewer identified spikes
◦ Lower probability of remaining in the spike regime
◦ Slightly worse goodness-of-fit 
 Indicated by lower KS-test p-values

 None of the 2-regime models gives a satisfactory fit
◦ Except for PJM prices
◦ Generally this is caused by a bad fit of the base regime
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 Perhaps we need a 3rd regime to model 
the ‘price drops’

 Introduce a 3rd ‘drop’ regime
◦ Contrary to the Huisman & Mahieu (2003) model, the price 

can stay in the ‘excited’ regimes (‘spike’ and ‘drop’) 
◦ Use a ‘mirror image’ or ‘reflected’ shifted log-normal 

distribution
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 When fitting 3-regime models
◦ Practically all spikes are identified correctly 
◦ Vasicek base regime dynamics
 Reasonable goodness-of-fit (high p-values)
 Clusters of moderate prices identified as spikes or drops !
◦ CIR base regime dynamics
 Barely acceptable goodness-of-fit (low p-values)
 No clusters of wrongly identified spikes or drops 

 Deseasonalization method makes a difference

… as usual … more work is needed 
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 The quest for the model is not over
◦ Play with base regime dynamics
 Use heavy tailed innovations in the CIR model
 Use a different heteroskedastic mechanism

 The devil is in deseasonalization
◦ Use fundamental data to better fit long term seasonality

 MRS models can be used to identify spikes in data
◦ Spike identification is dependent on specification of the 

models for the regimes
 Compare with other spike identification methods
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