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 Risk management and derivatives pricing often 
require a model for spot prices that is:

 Realistic
◦ Why would we want an unrealistic model?!

 Parsimonious
◦ Faster simulation, smaller calibration errors

 Statistically sound
◦ We can calibrate any model to any dataset …

◦ … but does it really fit the data? Does it make sense?
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 Power markets in a nutshell

 Dealing with seasonality

 Case study: MRS models for the spot price
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Weekends



 Seasonality
◦ Daily, weekly, annual

 Weather dependency
 Non- or limited storability
 Transmission constraints
 Spikes in prices and loads (consumption) 

◦ Extreme volatility, up to 50% for daily returns

 “Inverse leverage effect”
◦ Prices and volatility are positively correlated
◦ Both are negatively related to the inventory level

 “Samuelson effect”
◦ Volatility of forward prices decreases with maturity
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 Spot price Pt (denoted also by St) is typically modeled 
as a sum (or a product) of 
◦ A ‘deterministic’ (seasonal) component Λt and

◦ A purely stochastic component Xt

 A seasonal model for Λt is usually calibrated and removed 
from the data prior to estimating Xt

◦ Extreme observations may impact the estimate of Λt

 Possible solutions
◦ Use preprocessing – detect & replace price spikes with more 

‘normal’ values; add them back before estimating Xt

◦ Use methods ‘immune’ to outliers (quantiles, wavelets)
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 Differencing
◦ Simplest form: Xt = Pt – Pt-7

 Removing the mean or median week
Mo Tu We Th Fr Sa Su (week #1)

Mo Tu We Th Fr Sa Su (week #2)

… and holidays
Mo Tu We Th Fr Sa Su Ho (week #1)

 Moving average (MA) method
◦ Calculate mt = (Pt-3 + ... + Pt+3)/7

◦ Subtract the mean of deviations (Pk+7j - mk+7j) from Pt
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 Fitting piecewise constant functions 
(dummy variables) for each month

 Bhanot (2000), Haldrup & Nielsen (2006), Knittel & Roberts (2005), Lucia & Schwartz (2002)

 For each day of the week corresponds to mean/median 
week or moving average method

 Fitting (a sum of) sinusoids with trend
 Bierbrauer et al. (2007), 

Borovkova & Permana (2006), 
Cartea & Figueroa (2005), De Jong (2006), 
Geman & Roncoroni (2006), 
Lucia & Schwartz (2002), 
Pilipovic (1997), Weron (2006)

 Wavelet smoothing
 Weron et al. (2004), Trück et al. (2007), 

Weron (2008), Janczura & Weron (2009)
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 Sinusoid with linear trend 
 t = A sin(2 (t+B)) + C + D t

 t – time in years

 … with cubic trend
 t = A sin(2 (t+B)) + C + D t + E t2

 … with linear trend 
and linear amplitude
 t = (A + F t) sin(2 (t+B)) + C + D t

 … with cubic trend and linear amplitude
 t = (A + F t) sin(2 (t+B)) + C + D t + E t2
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EEX2 (2005-2008)
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 Any signal (here: the spot price) can be built up as 

a sequence of projections onto 

◦ one father wavelet SJ and a sequence of mother wavelets {Dj}

x(t) = SJ + DJ + DJ−1 + ... + D1

◦ where 2J is the maximum scale sustainable by the number of 

observations

◦ Sines are localized in frequency (characteristic scale)

◦ Wavelets are also localized in time (space) 
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 At the coarsest scale the signal can be estimated by SJ

◦ By adding a mother wavelet Dj of a lower scale 
j = J−1, J−2, …, we obtain a better 
estimate of the original signal 

lowpass filtering

 For daily data the S3, S5 and S8

approximations roughly 
correspond to 
◦ weekly (23 = 8 days),

◦ monthly (25 = 32 days) and

◦ annual (28 = 256 days) smoothing
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EEX2 (2005-2008)
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 Piecewise constant functions 
◦ What about trends?

 Sinusoids
◦ How to predict the trend? 
◦ Model risk

 Wavelets
◦ Extrapolate the smoothed price?

 Forward prices
◦ Smooth interpolation of forward prices
◦ What about the far end? 
◦ What about risk premia?
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 Let the seasonal component Λt be composed of 
◦ A long-term seasonal trend Tt
 Changing climate/consumption conditions throughout the year 

and the long-term non-periodic structural changes (fuel prices)

◦ And a weekly periodic part st

 First, Tt is estimated from daily spot prices Pt

◦ Using ‘annual’ wavelet smoothing (J=8)

 Next, st is removed by applying the MA method

 Finally, the deseasonalized prices, i.e. Pt – Tt – st, 
are shifted: min(new process) = min(Pt)
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 Motivation

 Power markets in a nutshell
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 Typically the deseasonalized spot electricity price Xt is 
assumed to follow some kind of a jump-diffusion (JD) 
process:

 Clewlow & Strickland, 2000; Eydeland & Geman, 2000; Kaminski, 1999
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Generalized drift
(possibly mean 

reverting)
Generalized volatility

(possibly 
heteroskedastic)

Pure jump process with given 
intensity and severity –

e.g. a compound Poisson 
process: dq(X,t) = XdNt
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 After a jump the price is forced back to its normal level
◦ by mean reversion (MRJD)  
◦ by mean reversion coupled 

with downward jumps
 Deng 1999; Escribano et al., 2002; 

Geman & Roncoroni, 2006

◦ by a combination of mean 
reversions with different rates
 Benth et al., 2007

 Alternatively, a positive jump may be always followed 
by a negative jump of approximately the same size –
especially on the daily scale (MRD+J)

 Weron et al., 2004; Weron, 2008
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 What about periods of consecutive jumps?
◦ Grid congestion, outage

 Solution:
◦ Allow the process to ‘stay’ 

in the ‘jump regime’ with 
some probability

◦ Regime-switching
models
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 Assume that the switching mechanism can be governed by a latent 
random variable that follows a Markov chain with two (or more) 
possible states

 The regimes are only latent, not directly observable

 Estimation via EM (expectation–maximization) algorithm 
(Dempster et al., 1977; Hamilton, 1990; Kim, 1993) 
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A two-state regime model: Xt = {1,2}

Transition probabilities:

1 2q11 q22

1-q11

1-q22
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 Ethier & Mount (1998) proposed a model with 2 regimes 

governed by AR(1) processes 

◦ Concluded that there was strong support for the existence of 

different means and variances in the two regimes

 Huisman & de Jong (2003) proposed a 2-regime model

◦ With a stable, mean-reverting AR(1) regime and 

◦ An independent spike (IS) regime modeled by a normal variable 

with a higher mean and variance

◦ Bierbrauer et al. (2004), Weron et al. (2004) used log-normal and 
Pareto distributed spike regimes

◦ De Jong (2006) introduced autoregressive, Poisson driven spike 
regime dynamics
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 Some authors reported that the ‘expected spike 
sizes’ ( E(Yt,spike) − E(Yt,base)) were negative
◦ See e.g. De Jong (2006), Bierbrauer et al. (2007)

◦ … but were not considered as evidence for model 
misspecification

 Regime classification was not checked but …
◦ … the calibration scheme generally assigns all extreme 

prices to the spike regime

 The ‘sudden drops’ in the log-price are not that interesting 
for price modeling and derivatives valuation

 They appear extreme only because of the log transform
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 Fundamental extensions to improve spike occurrence:
◦ Mount et al. (2006) proposed a 2-regime model with

 Two AR(1) regimes for log-prices and

 Transition probabilities dependent on the reserve margin

◦ Huisman (2008) extended the IS 2-regime model for log-prices

 Considered temperature dependent transition probabilities 

 Statistical refinements to improve goodness-of-fit:
◦ Weron (2008) suggested to fit prices, not log-prices 

◦ Janczura and Weron (2009, 2010a, 2010b) 

 Introduced CIR-type dynamics for the base regime and

 Median-shifted spike regime distributions

 Advocated the IS 3-regime model 
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 Testing the goodness-of-fit for processes is not 
straightforward

 We can 
◦ Test the marginal distributions using an EDF-type test, like 

the Kolmogorov-Smirnov (K-S) test 

 … but
◦ The K-S test cannot be applied directly …

◦ In the considered models neither the prices themselves nor 
their differences or returns are i.i.d.
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 Data is split into 2 subsets (3 for the 3-regime model)
◦ Spikes, i.e. prices with probability P(Rtt= 2) > 0.5
 Price drops, i.e. prices with probability P(Rtt= 3) > 0.5

◦ The base regime, i.e. all remaining prices

 Discretization of the base regime dynamics:

◦ Where = 0 for the Vasicek model

 … for dt = 1 leads to:

◦ Where t’s are i.i.d. Gaussian random variables
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 Applying the above transformation to base regime 
data we obtain 2 (or 3) i.i.d. samples: 
◦ fS-distributed, e.g. lognormal or Pareto, for the spike regime

 fD-distributed, 
e.g. lognormal, 
for the drop regime

◦ And Gaussian for 
the base regime
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 Combining these samples yields 
◦ A sample of independent variables with the distribution 

being a mixture of 2 (or 3) laws: 

 fS, (fD,) and Gaussian

 The probability that a given price Xt comes from 
◦ The spike distribution is equal to P(Rt = 2)

 The price drop distribution is equal to P(Rt = 3)

◦ The Gaussian law is equal to P(Rt = 1)

 We can perform the K-S test for 
◦ The subsets

◦ And the whole sample
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 Weighted empirical distribution function (edf)


with

◦ An unbiased and consistent estimator of F(t)

◦ The statistics converges 

(weakly) to the Kolmogorov-Smirnov distribution

◦ For proofs see Janczura and Weron (2010b)
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 Perhaps spike distributions should assign zero 
probability to prices below a certain quantile

 Let m = median(Xt)
◦ Shifted log-normal (SLN), for x > m

◦ Shifted Pareto (SP), for x > ≥ m

 Is the median cutoff optimal?
◦ In general, no 
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 For extremely spiky markets 
(such as the Australian) they 
improve the fit
◦ Bid-cap of e9.21=10000 AUD
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 When fitting MRS models with shifted spike 
distributions
◦ Practically all spikes are identified correctly 

◦ There are no ‘sudden drops’ classified as spikes 

 This suggests that the shifted distributions are more 
suitable for the spikes 
◦ But … there are clusters 

of ‘normal’ prices 
classified as spikes 
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Vas-SLN
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 Perhaps different dynamics should be used 
for the base regime

 Introduce heteroskedasticity ( 0)

 For =0, Vasicek MRD process (Vasicek, 1977)

 For =0.5, CIR square root process (Cox, Ingersoll, Ross, 1985)

 For =1, BS process (Brennan, Schwartz, 1980)
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Leverage effect ?!



 Perhaps we need a 3rd regime to model 
the ‘price drops’

 Introduce a 3rd ‘drop’ regime
◦ Contrary to the Huisman

& Mahieu (2003) model, 
the price can stay in the 
‘excited’ regimes (‘spike’ 
and ‘drop’) 

◦ Use a ‘mirror image’ or 
‘reflected’ shifted log-normal 
distribution
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Inverse
leverage
effect !



 Admit a transition matrix with time-varying 
(periodic) probabilities pij(t)

 Calibrated in a two-step procedure in the last part of 
the E-step of the EM algorithm:
◦ First, the probabilities are estimated independently for 

each season: Winter (XII-II), Spring (III-V), 
Summer (VI-VIII) and Autumn (IX-XI)

◦ Then they are smoothed using a kernel density estimator 
with a Gaussian kernel

 This modification complicates gof testing
◦ Only p-values for individual regimes are reported
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 The quest for the model is not over
◦ Improve the timing of spikes

 The devil is in deseasonalization
◦ Preprocess data before fitting the seasonal components

◦ Use fundamental data to better fit long term seasonality

 “Added value”
◦ MRS models can be used to identify spikes in data

◦ … but spike identification is dependent on specification of 
the models for the regimes
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