Markov regime-switching models for electricity prices

Rafał Weron

(joint work with Joanna Janczura)

Institute of Organization and Management Wrocław University of Technology

Motivation

- Risk management and derivatives pricing often require a model for spot prices that is:
- Realistic
 - Why would we want an unrealistic model?!
- Parsimonious
 - Faster simulation, smaller calibration errors
- Statistically sound
 - We can calibrate any model to any dataset ...
 - ... but does it **really** fit the data? Does it **make sense**?

Agenda

- Motivation
- Power markets in a nutshell
- Dealing with seasonality
- Case study: MRS models for the spot price

Wholesale electricity market structure

The spot

Use of the spot market

Rafał Weron, U.Sydney, 2010

Energy commodities

Rafał Weron, U.Sydney, 2010

Zoom in (one year)

Zoom in (one month)

Rafał Weron, U.Sydney, 2010

Electricity is a (special) commodity

- Seasonality
 - Daily, weekly, annual
- Weather dependency
- Non- or limited storability
- Transmission constraints

- Extreme volatility, up to 50% for daily returns
- "Inverse leverage effect"
 - Prices and volatility are positively correlated
 - Both are negatively related to the inventory level
- "Samuelson effect"
 - Volatility of forward prices decreases with maturity

Supply stack and the spikes

Rafał Weron, U.Sydney, 2010

Price spikes ... are transient

Agenda

- Motivation
- Power markets in a nutshell
- Dealing with seasonality
- Case study: MRS models for the spot price

The datasets: two U.S. markets (4 year samples - 1463 observations)

15

... and two European (4 year samples - 1463 observations)

The need to deseasonalize ...

Dealing with seasonality

- Spot price P_t (denoted also by S_t) is typically modeled as a sum (or a product) of
 - A 'deterministic' (seasonal) component Λ_t and
 - A purely stochastic component X_t
- A seasonal model for Λ_t is usually calibrated and removed from the data prior to estimating X_t
 - Extreme observations may impact the estimate of Λ_t
- Possible solutions
 - Use preprocessing detect & replace price spikes with more 'normal' values; add them back before estimating X_t
 - Use methods 'immune' to outliers (quantiles, wavelets)

Short-term seasonality

Differencing

• Simplest form: $X_t = P_t - P_{t-7}$

Removing the mean or median week

Mo Tu We Th Fr Sa Su	(week #1)
Mo Tu We Th Fr Sa Su	(week #2)
and holidays	
Mo Tu We Th Fr Sa Su Ho	(week #1

- Moving average (MA) method
 - Calculate $m_t = (P_{t-3} + ... + P_{t+3})/7$
 - Subtract the mean of deviations $(P_{k+7j} m_{k+7j})$ from P_t

Long-term seasonality

- Fitting piecewise constant functions (dummy variables) for each month
 - Bhanot (2000), Haldrup & Nielsen (2006), Knittel & Roberts (2005), Lucia & Schwartz (2002)
 - For each day of the week → corresponds to mean/median week or moving average method

Fitting (a sum of) sinusoids with trend

 Bierbrauer et al. (2007), Borovkova & Permana (2006), Cartea & Figueroa (2005), De Jong (2006), Geman & Roncoroni (2006), Lucia & Schwartz (2002), Pilipovic (1997), Weron (2006)

Wavelet smoothing

 Weron et al. (2004), Trück et al. (2007), Weron (2008), Janczura & Weron (2009)

Rafał Weron, U.Sydney, 2010

Fitting sinusoids

- Sinusoid with linear trend
 - $\Lambda_t = A \cdot \sin(2\pi(t+B)) + C + D \cdot t$
 - *t* time in years
- ... with cubic trend
 - $\Lambda_t = A \cdot \sin(2\pi(t+B)) + C + D \cdot t + E \cdot t^2$
- ... with linear trend and linear amplitude
 - $\Lambda_t = (A + F \cdot t) \cdot \sin(2\pi(t+B)) + C + D \cdot t$

- ... with cubic trend and linear amplitude
 - $\Lambda_t = (A + F \cdot t) \cdot \sin(2\pi(t+B)) + C + D \cdot t + E \cdot t^2$

Price

Wavelet smoothing

1/2

- Any signal (here: the spot price) can be built up as a sequence of projections onto
 - $\circ~$ one father wavelet S_J and a sequence of mother wavelets $\{D_j\}$

 $x(t) = S_{J} + D_{J} + D_{J-1} + ... + D_{1}$

- where 2^J is the maximum scale sustainable by the number of observations
- Sines are localized in frequency (characteristic scale)
- Wavelets are also localized in time (space)

Wavelet smoothing

2/2

- At the coarsest scale the signal can be estimated by S_I
 - By adding a mother wavelet D_j of a lower scale j = J-1, J-2, ..., we obtain a better estimate of the original signal \rightarrow lowpass filtering
- For daily data the S₃, S₅ and S₈ approximations roughly correspond to
 - weekly (2³ = 8 days),
 - monthly $(2^5 = 32 \text{ days})$ and
 - annual (2⁸ = 256 days) smoothing

Rafał Weron, U.Sydney, 2010

Forecasting long-term seasonality

- Piecewise constant functions
 - What about trends?
- Sinusoids
 - How to predict the trend?
 - Model risk
- Wavelets
 - Extrapolate the smoothed price?
- Forward prices
 - Smooth interpolation of forward prices
 - What about the far end?
 - What about risk premia?

Seasonal decomposition

- Let the seasonal component Λ_t be composed of
 - A long-term seasonal trend T_t
 - Changing climate/consumption conditions throughout the year and the long-term non-periodic structural changes (fuel prices)
 - And a weekly periodic part s_t
- First, T_t is estimated from daily spot prices P_t
 - Using 'annual' wavelet smoothing (J=8)
- Next, s_t is removed by applying the MA method
- Finally, the deseasonalized prices, i.e. P_t T_t s_t, are shifted: min(new process) = min(P_t)

Rationale for the wavelet smoother

Agenda

- Motivation
- Power markets in a nutshell
- Dealing with seasonality
- Case study: MRS models for the spot price

Reduced form models for the spot price

Typically the deseasonalized spot electricity price X_t is assumed to follow some kind of a jump-diffusion (JD) process:

Clewlow & Strickland, 2000; Eydeland & Geman, 2000; Kaminski, 1999

Problems with JD models

After a jump the price is forced back to its normal level

- by mean reversion (**MRJD**)
- by mean reversion coupled with downward jumps
 - Deng 1999; Escribano et al., 2002; Geman & Roncoroni, 2006
- by a combination of mean reversions with different rates
 - Benth et al., 2007

 Alternatively, a positive jump may be always followed by a negative jump of approximately the same size – especially on the daily scale (MRD+J)

• Weron et al., 2004; Weron, 2008

Problems with JD models cont.

- What about periods of consecutive jumps?
 - Grid congestion, outage
- Solution:
 - Allow the process to 'stay' in the 'jump regime' with some probability
 - Regime-switching models

Markov regime switching (MRS) models

 Assume that the switching mechanism can be governed by a latent random variable that follows a Markov chain with two (or more) possible states

A two-state regime model: $X_t = \{1,2\}$

Transition probabilities:

$$\mathbf{Q} = (q_{ij}) = \begin{pmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{pmatrix} = \begin{pmatrix} q_{11} & 1 - q_{11} \\ 1 - q_{22} & q_{22} \end{pmatrix}$$

- The regimes are only latent, not directly observable
 - Estimation via EM (expectation-maximization) algorithm

(Dempster et al., 1977; Hamilton, 1990; Kim, 1993)

First generation MRS models for electricity spot log-prices

- Ethier & Mount (1998) proposed a model with 2 regimes governed by AR(1) processes
 - Concluded that there was strong support for the existence of different means and variances in the two regimes
- Huisman & de Jong (2003) proposed a 2-regime model
 - With a stable, mean-reverting AR(1) regime and
 - An independent spike (IS) regime modeled by a normal variable with a higher mean and variance
 - Bierbrauer et al. (2004), Weron et al. (2004) used log-normal and Pareto distributed spike regimes
 - De Jong (2006) introduced autoregressive, Poisson driven spike regime dynamics

Problems with first generation MRS models for log-prices

- Some authors reported that the 'expected spike sizes' (= $E(Y_{t,spike}) E(Y_{t,base})$) were **negative**
 - See e.g. De Jong (2006), Bierbrauer et al. (2007)
 - ... but were not considered as evidence for model misspecification
- Regime classification was not checked but ...
 - ... the calibration scheme generally assigns all extreme prices to the spike regime
 - The 'sudden drops' in the log-price are not that interesting for price modeling and derivatives valuation
 - They appear extreme only because of the log transform

Figure 3: Sample calibration results for 2-regime models with Vasicek, i.e. AR(1), base regime dynamics and alternative spike regimes fitted to deseasonalized prices or log-prices from three major power markets. *Top left*: An independent spike (IS) model with normal spikes fitted to PJM log-prices. *Top right*: The Ethier and Mount (1998) model with AR(1) spike regime fitted to EEX log-prices. *Bottom left and right*: An IS model with lognormal spikes fitted to EEX prices and NEPOOL log-prices, respectively. The corresponding lower panels display the conditional probability $P(S) \equiv P(R_t = s | x_1, x_2, ..., x_T)$ of being in the spike regime. The prices or log-prices classified as spikes, i.e. with P(S) > 0.5, are additionally denoted by dots in the upper panels. For descriptions of the datasets see Section 2 and Figures 1-2.

Figure 4: Comparison of empirical (sample) and theoretical (model implied) spike regime probability distribution functions in the first generation 2-regime models. The models and datasets are the same as in Figure 3. Note, that for the Ethier and Mount (1998) model the distributions of the noise in the AR(1) process driving the spike regime are plotted (*top right*).

Second generation MRS models for electricity (log-)spot prices

- Fundamental extensions to improve spike occurrence:
 - Mount et al. (2006) proposed a 2-regime model with
 - Two AR(1) regimes for log-prices and
 - Transition probabilities dependent on the reserve margin
 - Huisman (2008) extended the IS 2-regime model for log-prices
 - Considered temperature dependent transition probabilities
- Statistical refinements to improve goodness-of-fit:
 - Weron (2008) suggested to fit prices, not log-prices
 - Janczura and Weron (2009, 2010a, 2010b)
 - Introduced CIR-type dynamics for the base regime and
 - Median-shifted spike regime distributions
 - Advocated the IS 3-regime model

Goodness-of-fit

- Testing the goodness-of-fit for processes is not straightforward
- We can
 - Test the marginal distributions using an EDF-type test, like the Kolmogorov-Smirnov (K-S) test
- ... but
 - The K-S test cannot be applied directly ...
 - In the considered models neither the prices themselves nor their differences or returns are i.i.d.

Testing procedure #1: *Equally weighted edf (ewedf)

Data is split into 2 subsets (3 for the 3-regime model)

- **Spikes**, i.e. prices with probability $P(R_t = 2) > 0.5$
 - Price **drops**, i.e. prices with probability $P(R_t = 3) > 0.5$
- The **base** regime, i.e. all remaining prices
- Discretization of the base regime dynamics:

$$dX_t = (\alpha - \beta X_t)dt + \sigma X_t^{\gamma} dW_t$$

- Where $\gamma = 0$ for the Vasicek model
- ... for *dt* = 1 leads to:

$$\varepsilon_t = (X_{t+1} - (1 - \beta)X_t - \alpha)/\sigma X_t^{\gamma}$$

• Where ε_t 's are i.i.d. Gaussian random variables

Testing procedure #1 cont.

- Applying the above transformation to base regime data we obtain 2 (or 3) i.i.d. samples:
 - f_S -distributed, e.g. lognormal or Pareto, for the spike regime
 - *f_D*-distributed,
 e.g. lognormal,
 for the drop regime
 - And Gaussian for the base regime

Testing procedure #1 cont.

- Combining these samples yields
 - A sample of independent variables with the distribution being a mixture of 2 (or 3) laws:
 - f_{S} , (f_{D} ,) and Gaussian
- The probability that a given price X_t comes from
 - The spike distribution is equal to $P(R_t = 2)$
 - The price drop distribution is equal to $P(R_t = 3)$
 - The Gaussian law is equal to $P(R_t = 1)$
- We can perform the K-S test for
 - The subsets
 - And the whole sample

Testing procedure #2: Weighted edf (wedf)'

Weighted empirical distribution function (edf)

• An unbiased and consistent estimator of F(t)

• The statistics
$$D_n = \frac{\sum_{i=1}^n w_i}{\sqrt{\sum_{i=1}^n w_i^2}} \sup_{t \in \mathbb{R}} |F_n(t) - F(t)|$$
 converges

(weakly) to the Kolmogorov-Smirnov distribution

For proofs see Janczura and Weron (2010b)

Comparison of #1 and #2

Figure 1: Comparison of the weighted empirical distribution function (wedf), the equally-weighted empirical distribution function (ewedf) and the standard empirical distribution function (edf) calculated for a sample trajectory of a MRS model with two independent regimes. Distribution functions of the i.i.d. Gaussian regime are given in the left panel, while of the residuals of the AR(1) regime in the right panel.

Rafał Weron, U.Sydney, 2010

Shifted spike distributions

- Perhaps spike distributions should assign zero probability to prices below a certain quantile
- Let $m = median(X_t)$
 - Shifted log-normal (SLN), for *x* > *m*

 $\log\bigl(X_{t,2}-m\bigr)\sim N(\mu,\sigma^2)$

- Shifted Pareto (SP), for $x > \lambda \ge m$ $X_{t,2} \sim F_P(x; \alpha, \lambda) = 1 - \left(\frac{\lambda}{x}\right)^{\alpha}$
- Is the median cutoff optimal?
 In general, no →

Rafał Weron, U.Sydney, 2010

Table 1: Goodness-of-fit statistics for 2-regime models with Vasicek, see eqns. (4)-(5), base regime dynamics and median-shifted lognormal or Pareto spike distributions. Models for prices are summarized in columns 2-7, for log-prices in columns 8-13. *p*-values of 0.05 or more are emphasized in bold.

	Prices							Log-prices					
	Simulation		K-S test p-value			Simulation			K-S test p-value		lue		
Data	IQR	IDR	LogL	Base	Spike	Model	IQR	IDR	LogL	Base	Spike	Model	
					Shifted	lognorma	l spikes						
EEX1	9%	11%	-4193.7	0.0012	0.4061	0.0032	30%	30%	403.0	0.0000	0.7371	0.0000	
EEX2	13%	3%	-5066.9	0.0090	0.4732	0.0149	27%	16%	399.6	0.0000	0.6313	0.0000	
PJM1	9%	-1%	-4385.9	0.0341	0.4346	0.0530	19%	8%	777.4	0.0007	0.3219	0.0012	
PJM2	-3%	3%	-5012.1	0.0887	0.9196	0.0893	3%	6%	780.1	0.0747	0.4147	0.0696	
NEP1	2%	2%	-4327.1	0.0247	0.5093	0.0561	9%	8%	610.4	0.0002	0.8316	0.0003	
NEP2	0%	-2%	-4665.9	0.0823	0.8416	0.1251	8%	0%	1417.9	0.0088	0.7430	0.0170	
					Shifte	ed Pareto s	pikes						
EEX1	7%	9%	-4218.6	0.0000	0.0000	0.0000	27%	27%	436.9	0.0000	0.0123	0.0000	
EEX2	10%	1%	-5101.8	0.0188	0.0008	0.0412	26%	16%	374.6	0.0000	0.0166	0.0000	
PJM1	8%	-5%	-4447.2	0.0500	0.0000	0.0500	20%	6%	755.2	0.0007	0.0000	0.0012	
PJM2	0%	1%	-5161.6	0.0041	0.0000	0.0007	6%	7%	744.9	0.0262	0.3508	0.0147	
NEP1	-2	-6%	-4366.1	0.0300	0.0000	0.0300	8%	3%	546.7	0.0001	0.0000	0.0003	
NEP2	13%	0%	-4703.1	0.0230	0.0000	0.0097	9%	0%	1409.7	0.0024	0.0000	0.0083	

Figure 5: Comparison of empirical (sample) and theoretical (model implied) spike regime probability distribution functions in the 2-regime model with median-shifted lognormal spikes and Vasicek base regime dynamics. The fits are much better than for the models with non-shifted spike regime distributions, see Figure 4.

Price-capped spike distributions

 For extremely spiky markets (such as the Australian) they improve the fit
 Bid-cap of e^{9.21}=10000 AUD

We consider the lognormal (LogN) distribution:

$$\log(X_t - m) \sim \mathcal{N}(\alpha_2, \sigma_2^2), \quad X_t > m,$$

and the truncated lognormal (TLogN) distribution:

$$f(x) = \frac{C \exp\left(-\frac{(\log(x-m) - \alpha_2)^2}{2\sigma_2^2}\right)}{(x-m)\sigma_2\sqrt{2\pi}}, \quad x > m,$$
(3)

where $C = \Phi((\log(L) - \alpha_2)/\sigma_2)$ is a normalizing constant, Φ is the standard Gaussian cumulative distribution function (cdf) and L is the truncation level.

Conclusions

- When fitting MRS models with shifted spike distributions
 - Practically all spikes are identified correctly
 - There are no 'sudden drops' classified as spikes
- This suggests that the shifted distributions are more suitable for the spikes
 Vas-SLN
 - But ... there are clusters of 'normal' prices classified as spikes

Diffusion processes revisited

- Perhaps different dynamics should be used for the base regime
- Introduce heteroskedasticity (γ ≠0)

 $dX_t = (\alpha - \beta X_t)dt + \sigma X_t^{\gamma} dW_t$

- For γ=0, Vasicek MRD process (Vasicek, 1977)
- For γ=0.5, CIR square root process (Cox, Ingersoll, Ross, 1985)
- For γ=1, BS process (Brennan, Schwartz, 1980)

Vasicek vs. heteroscedastic base regime dynamics

Table 2: Goodness-of-fit statistics for 2-regime models with heteroscedastic base regime dynamics and median-shifted lognormal spike distributions. Models for prices are summarized in columns 2-8, for log-prices in columns 9-15. *p*-values of 0.05 or more are emphasized in bold.

	Prices									Log-prices						
	Simulation K-S test p-value								Simulation				K-S test p-value			
Data	γ	IQR	IDR	LogL	Base	Spike	Model	γ	IQR	IDR	LogL	Base	Spike	Model		
	Shifted lognormal srike:															
EEX1	-0.43	0%	0%	-4169.3	0.0022	0.2365	0.0050	-4.08	22%	26%	625.5	0.0000	0.9865	0.0000		
EEX2	-0.32	10%	2%	-5041.7	0.0125	0.2306	0.0276	-3.69	22%	12%	551.8	0.0000	0.5875	0.0000		
PJM1	0.10	5%	1%	-4356.4	0.0853	0.5408	0.1607	-1.02	17%	6%	793.1	0.0006	0.1924	0.0011		
PJM2	0.16	1%	-1%	-4989.3	0.5882	0.1802	0.5435	-0.01	1%	2%	804.2	0.0582	0.1843	0.0995		
NEP1	0.22	2%	0%	-4326.3	0.0317	0.4754	0.0742	-1.35	9%	12%	643.1	0.0003	0.8524	0.0003		
NEP2	0.62	0%	0%	-4654.0	0.0828	0.3566	0.0983	-2.37	1%	-1%	1445.2	0.0368	0.1724	0.0980		

Leverage effect ?!

Figure 6: Sample calibration results for the 2-regime model with median-shifted lognormal spikes fitted to NEP2 prices. The difference between Vasicek (*left*) and heteroscedastic (*right*) base regime dynamics is clearly visible. Note, that due to the cutoff at the median, none of the price 'drops' are classified as spikes anymore.

3-regime models revisited

- Perhaps we need a 3rd regime to model the 'price drops'
- Introduce a 3rd 'drop' regime
 - Contrary to the Huisman & Mahieu (2003) model, the price can stay in the 'excited' regimes ('spike' and 'drop')
 - Use a 'mirror image' or 'reflected' shifted log-normal distribution

IS 3-regime models

Table 4: Goodness of fit statistics for the IS 3-regime models with heteroscedastic base regime dynamics and median-shifted lognormal spikes and drops. *p*-values of 0.05 or more are emphasized in bold.

	Simul	ation			K-S test	p-values			Simu	lation			K-S test	p-values	
Data	IQR	IDR	LogL	Base	Spike	Drop	Model	Data	IQR	IDR	LogL	Base	Spike	Drop	Model
Prices									Log-prices						
EEX1	-1%	3%	-3798.2	0.8371	0.0726	0.8576	0.5719	EEX1	-2%	5%	1181.2	0.7297	0.3341	0.1971	0.5001
EEX2	5%	-1%	-4848.5	0.5510	0.2920	0.9196	0.3168	EEX2	7%	1%	944.6	0.2933	0.5090	0.5204	0.6517
PJM1	2%	0%	-4153.9	0.3876	0.7052	0.7715	0.4072	PJM1	8%	1%	1002.9	0.3413	0.2726	0.9080	0.4640
PJM2	2%	0%	-4723.2	0.4824	0.3273	0.0244	0.4828	PJM2	1%	2%	1030.2	0.2165	0.4604	0.2887	0.5258
NEP1	0%	0%	-4266.6	0.0404	0.6121	0.9092	0.0609	NEP1	1%	2%	853.0	0.1084	0.8940	0.1948	0.1362
NEP2	5%	0%	-4610.3	0.1359	0.7911	0.8771	0.1059	NEP2	6%	0%	1573.7	0.6858	0.7338	0.2334	0.8796

Inverse leverage effect !

		\wedge	
Da	ta	γ	
	Pric	25	
EE	X1	0.6309	
EE	X 2	0.3070	l
РЛ	M 1	0.6595	
РЛ	M 2	0.1724	
NE	P1	0.5262	
NE	P2	0.0742	
	Log-p	rices	1
EE	X1	0.4102	
EE	X 2	0.9115	
РЛ	M 1	0.4481	
РЛ	M2	0.5057	I
NE	P1	0.3068	
NE	P2	1.0923	

Figure 9: Calibration results for the IS 3-regime models with heteroscedastic base regime dynamics and median-shifted lognormal spikes and drops fitted to log-prices.

IS 3-regime models with timevarying transition probabilities

- Admit a transition matrix with time-varying (periodic) probabilities p_{ij}(t)
 - Calibrated in a two-step procedure in the last part of the E-step of the EM algorithm:
 - First, the probabilities are estimated independently for each season: Winter (XII-II), Spring (III-V), Summer (VI-VIII) and Autumn (IX-XI)
 - Then they are smoothed using a kernel density estimator with a Gaussian kernel
 - This modification complicates gof testing
 - Only *p*-values for individual regimes are reported

Transition probabilities: constant vs. time-varying

	Simu	Simulation			K-S test p-values			PJM2 [Jan 3, 2005 - Jan 4, 2009]
Data	IQR	IDR	LogL	Base	Spike	Drop	- 300	
			Prices				Ę	Spike
EEX1	-0%	-2%	-3896.2	0.9283	0.2444	0.5846	₹ 200	· · Drop
EEX2	-4%	-1%	-4839.5	0.1551	0.2536	0.8980	Ŋ	·
PJM1	-5%	-2%	-4215.9	0.1957	0.5965	0.3705	IUS	
PJM2	-4%	-4%	-4879.7	0.0424	0.4312	0.1007	8 100	
NEP1	0%	0%	-4211.1	0.0134	0.5258	0.7442	Ч	Wanter 1819 Ale light me All The Ale A The Ale And Ale
NEP2	-3%	-2%	-4566.5	0.2981	0.1140	0.4922	0	
			Log-pric	es			- 0	300 600 900 1200
EEX1	-1%	-3%	1132.7	0.6898	0.8781	0.0417	$\widehat{\alpha}$ $\frac{1}{2}$	
EEX2	-3%	0%	959.8	0.3952	0.3190	0.2340	0.5 d	
PJM1	-2%	-3%	1018.7	0.3139	0.1204	0.8435	0	300 600 900 1200
PJM2	-2%	-2%	904.2	0.1272	0.0953	0.3402	\hat{a}^{1}	
NEP1	0%	0%	863.6	0.1881	0.8957	0.7062	0.5	These here the second filles and the second
NEP2	-1%	-3%	1593.9	0.7883	0.1881	0.0409	0-	300 600 900 1200

Figure 8: Comparison of calibration results for the IS 3-regime models with constant (*left*) and time-varying (*right*) transition probabilities. Note, the time-varying (periodic) intensity of spikes and price drops and the overall visually better fit of the latter model. The corresponding lower panels display the conditional probabilities $P(S) \equiv P(R_t = s|x_1, x_2, ..., x_T)$ and $P(D) \equiv P(R_t = d|x_1, x_2, ..., x_T)$ of being in the spike or drop regime, respectively.

Rafał Weron, U.Sydney, 2010

Conclusions

- The quest for the model is not over
 - Improve the timing of spikes
- The devil is in deseasonalization
 - Preprocess data before fitting the seasonal components
 - Use fundamental data to better fit long term seasonality
- "Added value"
 - MRS models can be used to identify spikes in data
 - ... but spike identification is dependent on specification of the models for the regimes

References

Based on:

- J. Janczura, **R. Weron** (2010a) *An empirical comparison of alternate regime-switching models for electricity spot prices*, <u>Energy Economics</u>, <u>doi:10.1016/j.eneco.2010.05.008</u>.
- J. Janczura, R. Weron (2010b) Goodness-of-fit testing for regime-switching models, <u>Computational Statistics</u> <u>& Data Analysis</u>, submitted. Available at MPRA: <u>http://mpra.ub.uni-muenchen.de/22871</u>
- **R. Weron** (2009) *Heavy-tails and regime-switching in electricity prices,* Mathematical Methods of Operations Research 69(3), 457-473

Reviews:

- F.E. Benth, J.S. Benth, S. Koekebakker (2008) Stochastic Modeling of Electricity and Related Markets, World Scientific
- M. Burger, B. Graeber, G. Schindlmayr (2007) *Managing Energy Risk*, Wiley
- A. Eydeland, K. Wolyniec (2003) Energy and Power Risk Management, Wiley
- R. Weron (2006) Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach, Wiley

Selected references:

- M. Bierbrauer, S. Trück, R. Weron (2004) Modeling electricity prices with regime switching models, LNCS 3039: 859-867
- C. de Jong (2006) The nature of power spikes: A regime-switch approach, Stud. Nonlin. Dynam. & Econom. 10(3), Article 3
- J. Janczura, **R. Weron** (2009) *Regime switching models for electricity spot prices: Introducing heteroskedastic base regime dynamics and shifted spike distributions,* IEEE Conference Proceedings (EEM'09), DOI 10.1109/EEM.2009.5207175
- R. Huisman (2008) The influence of temperature on spike probability in day-ahead power prices. Energy Economics 30, 2697-2704
- R. Huisman, R. Mahieu (2003) *Regime jumps in electricity prices,* Energy Economics 25: 425-434
- T.D. Mount, Y. Ning, X. Cai (2006) Predicting price spikes in electricity markets using a regime-switching model with time-varying parameters, Energy Economics 28: 62-80
- S. Trück, **R. Weron**, R. Wolff (2007) *Outlier treatment and robust approaches for modeling electricity spot prices*. Proceedings of the 56th Session of the ISI. Available at MPRA: <u>http://mpra.ub.uni-muenchen.de/4711/</u>

