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The vocabulary

e Smart grids (smart meters, appliances, houses, ... cities)
Prosumers = producing consumers
Load = consumption (=~ demand) + losses
Non-storability

[*)

(*]

*]

e Power grid/network ~ Generation
o Interconnector :

*]

Power exchange,
power pool

Residential
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Introduction: What and how are we forecasting?

Power markets in Europe
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Introduction: What and how are we forecasting?

. in North America and Australia

v
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Electricity prices and loads (GEFCom2014)

Seasonality, floor reversion and price spikes
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Electricity prices vs. loads (GEFCom2014)

Non-linear, time-varying dependence
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Introduction: What and how are we forecasting?

Supply stack and price formation

Power production capacity in the Nordic countries
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Introduction: What and how are we forecasting?

The electricity ‘spot’ price
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Prices for different load periods

Strongly correlated but seem to follow different data generating processes (DGPs)
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A commodity ... but a very special one

Not storable (economically)

Time consuming shut-down /start-up procedures for some
technologies

Extreme price changes — spikes
Possible negative prices
Pronounced daily and weekly cycles, annual seasonality

Mean (floor) reversion

®© 6 6 o o

Highly volatile
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Forecasting horizons

@ Short-term
e From a few minutes up to a few days ahead
o Of prime importance in day-to-day market operations
o Medium-term
e From a few days to a few months ahead
Balance sheet calculations, risk management, derivatives pricing
Inflow of ‘finance solutions’
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Introduction: What a w are we forecast

A taxonomy of (price) modeling approaches
(Weron, 2014, Int. J. Forecasting)

Electricity price
models
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Combining point forecasts

Point forecast averaging: The idea
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Combining point forecasts

Forecast combinations, forecast/model averaging

@ The idea goes back to the 1960s to the seminal papers of
Bates and Granger (1969) and Crane and Crotty (1967)

@ In electricity markets:
o Electricity demand or transmission congestion forecasting
(Bunn, 1985a; Bunn and Farmer, 1985; Lgland et al., 2012;
Smith, 1989; Taylor, 2010; Taylor and Majithia, 2000)
o Only recently applied in the context of electricity price
forecasting (EPF): Bordignon et al. (2013), Nowotarski et al.
(2014) and Raviv et al. (2013)
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Combining point forecasts

Case study |: Combining price forecasts
(Weron, 2014, Int.J.Forecasting)
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Case study |: Combining price forecasts

Summary statistics for 6 individual and 3 averaging methods: WMAE is the mean value of
WMAE for a given model (with standard deviation in parentheses), # best is the number of
weeks a given averaging method performs best in terms of WMAE, and finally m.d.f.b. is the
mean deviation from the best model in each week. The out-of-sample test period covers 30
weeks (5.6.2013-31.12.2013).

Individual models Forecast combinations

AR TAR SNAR MRJD NAR FM Simple CLS LAD

WMAE 5.03 5.07 4.77 4.98 488 5.36 447 429 492
(3.40)  (3.53) (3.26) (3.17)  (1.62)  (3.17) (2.87)  (1.88)  (2.41)

# best 1 3 4 1 2 4 8 6 1

m.d.f.b. 1.01 1.05 0.75 0.96 0.86 1.34 0.45 0.27 0.89
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In the ‘Al world’ ...

e Committee machines, ensemble averaging:

o Guo and Luh (2004) combine a RBF network (23 inputs and six
clusters) and a MLP (55 inputs and eight hidden neurons) to
compute daily average on-peak electricity price for New England

o Forecast combinations and committee machines seem to evolve
independently, with researchers from both groups not being
aware of the parallel developments !
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Beyond point forecasts

Interval forecast averaging

@ For point forecasts: f. = Z,’\il w;f;
(e.g. a linear regression model)
@ For interval forecasts the above formula does not hold

@ A linear combination of a-th quantiles is not the a-th quantile
of a linear combination of random variables

M
g # > wiq)
=1

@ — Need for development of new approaches
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Quantile Regression Averaging (QRA)

Quantile Regression Averaging
(Nowotarski & Weron, 2015, Computational Statistics)
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Quantile Regression Averaging (QRA)
Quantile Regression Averaging cont.
The averaging problem is given by:

Qp(q|Pe) = Prwy

@ Q,(q|-) is the conditional g-th quantile of the electricity spot
price distribution,

@ p; are the regressors (explanatory variables)

@ wy is a vector of parameters for a given g-th quantile

Rafat Weron (PWr) Forecasting electricity prices 1.11.2015, CAS, Beijing 21 /41



Quantile Regression Averaging cont.

The weights are estimated by minimizing:

min Z qlpe — Pewe| + Z (1—q)lp: — Pew| | =

wi

{t:p:>prw:} {t:pt<prwr}

min Z(q — Lpe<powe) (Pt — PeWt)

t
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Quantile regression
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Quantile regression
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Quantile Regression Averaging (QRA)

Case study Il: Combining individual price forecasts
(Nowotarski & Weron, 2015, Computational Statistics)

@ Six individual point forecast models:
Autoregression (AR)

Threshold AR (TAR)

Semi-parametric AR (SNAR)
Mean-reverting jump diffusion (MRJD)
Non-linear AR neural network (NAR)
Factor model (FM)
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The data
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@ Seven months for calibration of individual models
@ Four weeks for calibration of quantile regression

@ 26 weeks for evaluation of interval forecasts
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Evaluation of forecasts

50% and 90% two-sided day-ahead prediction intervals
Two benchmark models: AR and SNAR

Christoffersen’s (1998) test for unconditional and conditional
coverage

©

1 pre [Lt\t—b Ut|t—1]
0 p: ¢ [Lt\t—h Ut|t—1]

The focus on the sequence: I, = {

e Conditional Coverage test Unconditional Coverage test
(UC + independece)
Asymptotically x2(2) Asymptotically y?(1)
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Quantile Regression Averaging (QRA)

Results: Unconditional coverage

Pl AR SNAR QRA
Unconditional coverage
50% 77.50 61.93 49.77
90% 97.53 96.41 89.33
Mean width (STD of interval width)
50% 4.55 (1.34) 2.76 (0.61) 2.23 (0.81)
90% 11.14 (3.31) 9.33(2.45) 6.78 (2.20)
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Results: Christoffersen’s test
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GEFCom2014 Price Track: 1st and 2nd place for QRA!

Presented to
Katarzyna Maciejowska

&
Jakub Nowotarski
S~
For Outstanding Performance In
Global Energy Forecasting Competition
2014
>~

IEEE Power & Energy Society
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Quantile Regression Averaging (QRA)

Case study Ill: Combining sister load forecasts
(Liu, Nowotarski, Hong & Weron, 2015, IEEE Transactions on Smart Grid)

@ Variable selection may be difficult in load forecasting

e Sister models — constructed by different subsets of variables
with overlapping components

e Here: 2 or 3 years for calibration and 4 ways of partitioning
training and validation periods

pr = Bo + S1Me + BoWi + BsHy + BaWieHy + f(T) +
+ Z f(ft,d) + Z f( Tt—lag)7
d

lag

o Sister forecasts are generated from sister models

Rafat Weron (PWr) Forecasting electricity prices 1.11.2015, CAS, Beijing 30/ 41



Quantile Regression Averaging (QRA)

The data

(from the load forecasting track of GEFCom2014)
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@ 2 or 3 years for calibration of sister (individual) models
@ 1 year for validation of sister (individual) models (variable selection)
@ 1 year for validation of probabilistic forecasts (best models selection)

@ 1 year for testing probabilistic forecasts
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Quantile Regression Averaging (QRA)

Benchmarks

@ Two naive benchmarks

e Scenario generation from historical weather data, no recency
effect (Vanilla)
o Quantiles interpolated from 8 individual forecasts (Direct)

@ Benchmarks from individual models

o 8 individual models (Ind) with residuals’ distribution
e Best Individual (BI) individual model according to MAE
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Quantile Regression Averaging (QRA)

Evaluation of forecasts

@ Pinball loss function for 99 percentiles (as in GEFCom2014)
1— 59 _ ~q
Pinballt = ( q)(j:t pt)7 pr < [/J\z
q(pt_pt), pt Zpt

@ Winkler score for central (1 — a) x 100%, a = 0.5, 0.9,
two-sided day-ahead PlI:

Ot for p; € [Lt|t—17 Ut\t—l]?
Wi =4 0: + %(Lt\t—l —pe) for pr < Lye-a,
¢ + %(Pt - Ut\t—l) for p; > Uyr-1,
where 0; = Uyt—1 — L¢je—1 is the Pl width
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Results: Test period

Model class  Pinball  Winkler (50%)

Winkler (90%)

QRA(8,183)
Ind(1,91)
BI(-,365)
Direct
Vanilla

2.85 25.04
3.22 26.35
3.00 26.38
3.19 26.62
8.00 70.51

55.85
56.38
57.17
94.27
150.0

@ Sister forecasts easy to generate

@ No need for independent expert forecasts

@ Simple way to leverage from point to probabilistic forecasts
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Factor Quantile Regression Averaging (FQRA)

Extension: A large number of predictors
(Maciejowska, Nowotarski & Weron, 2015, Int.J.Forecasting)

Individual point forecasts

Rafat Weron (PWr)
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Case study IV

(Maciejowska, Nowotarski & Weron, 2015, Int.J.Forecasting)
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@ 32 individual forecasting models
@ One year for calibration of individual models
e Half a year for calibration of quantile regression

@ One year for evaluation of interval forecasts

Rafat Weron (PWr) Forecasting electricity prices 1.11.2015, CAS, Beijing 36 / 41



Evaluation of forecasts

@ 50% and 90% two-sided day-ahead prediction intervals
@ Three methods: QRA, FQRA and ARX (benchmark)

o Christoffersen’s (1998) test for unconditional and conditional
coverage

@ Winkler score:

Ot for p: € [Lt|t—17 Ut\t—l]v
Wy =< 0: + (Lt\t 1—pe) for pe < Leje—1,
ot + a( Pr — Ut\t—l) for py > Ut|t—1>

where 0; = Uyjt—1 — L¢j¢—1 is the interval’s width
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Results: Christoffersen’s test
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Factor Quantile Regression Averaging (FQRA)

Results: Winkler score
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Take-home message(s)

@ Combining point forecasts is a robust technique, generally
improving the performance

@ The new trend is probabilistic forecasting

e Combining interval (or density) forecasts is more tricky than
combining point forecasts

@ QRA is a simple way to leverage from point to probabilistic
forecasts

@ QRA is potentially useful for VaR calculations

@ Forecast evaluation is a critical issue
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Evaluating probabilistic forecasts

@ For interval forecasts
e The pinball function, as in GEFCom2014
o The interval or Winkler score, see e.g. Maciejowska et al. (2015)

@ For density forecasts
o The Continuous Ranked Probability Score (CRPS), see e.g.
Gneiting and Raftery (2007)

o Statistical tests
o The conditional coverage test of Christoffersen (1998); for
extensions and alternatives see Berkowitz et al. (2011)
o The Berkowitz (2001) approach to the evaluation of density
forecasts (— VaR backtesting)
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