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Introduction Why forecast?

Why forecast loads and prices?
(Hong, 2015, EnergyBiz Magazine)

A ballpark estimate of savings
from a 1% reduction in MAPE for
a utility with 1GW peak load:

$500k/year from
long-term load forecasting
$300k/year from
short-term load forecasting
$600k/year from
short-term load
+ price forecasting

See Zareipour et al. (2010, TPWRS)
for a more ‘fundamental’ study
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Introduction Prices and loads

Electricity prices and loads (GEFCom2014)
Seasonality, floor reversion and price spikes

GEFCom2014: electricity price track

Data cont.
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Introduction Prices and loads

Electricity prices vs. loads (GEFCom2014)
Non-linear, time-varying dependence

GEFCom2014: electricity price track

Data cont.: price vs load
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Introduction The ‘spot’ price

The electricity ‘spot’ price
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Introduction The ‘spot’ price

Prices for different load periods
Strongly correlated but seem to follow different data generating processes (DGPs)
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Introduction The ‘spot’ price

A commodity ... but a very special one

Not storable (economically)

Time consuming shut-down/start-up procedures for some
technologies

Extreme price changes → spikes

Possible negative prices

Pronounced daily and weekly cycles, annual seasonality

Mean (floor) reversion

Highly volatile
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Introduction Recent reviews

Recent reviews
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Introduction Forecasting horizons

Load forecasting applications and classification
(Hong & Fan, 2016, IJF)
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Introduction Forecasting horizons

Electricity price forecasting horizons
(Weron, 2014, IJF)

Short-term

From a few minutes up to a few days ahead
Of prime importance in day-to-day market operations

Medium-term

From a few days to a few months ahead
Balance sheet calculations, risk management, derivatives pricing
Inflow of ‘finance solutions’

Long-term

Lead times measured in months, quarters or even in years
Investment profitability analysis and planning
Beyond the scope of this review

Rafa l Weron (Wroc law, Poland) Advances in forecasting of electricity prices 09.06.2016, ISS Rome 10 / 80



Introduction Taxonomy

A taxonomy of (price) modeling approaches
(Weron, 2014, IJF)

Hybrid models

Electricity price forecasting (EPF) 
and modeling approaches
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Agenda

A look into the future of load/price forecasting
(Weron, 2014, IJF)

1 Modeling and forecasting the trend-seasonal components

2 Beyond point forecasts – probabilistic forecasts
3 Combining forecasts

Point forecasts
Probabilistic forecasts

4 Multivariate factor models

5 Guidelines for evaluating forecasts
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1. Modeling and forecasting the trend-seasonal components Modeling the LTSC

Modeling the trend-seasonal components

Standard approach – decompose a time series of prices Pt into

the long-term trend-seasonal component (LTSC) Tt ,
the short-term seasonal component (STSC) st ,
and the remaining variability, error or stochastic component Xt

The hourly/weekly STSC is usually captured by autoregression
& dummies → forecasting is straightforward

Annual seasonality is present in spot prices, but in most cases
the LTSC is dominated by a more irregular cyclic component

Due to fuel prices, economic growth, long-term weather trends
See e.g. Janczura et al. (2013, ENEECO),
Nowotarski, Tomczyk & Weron (2013, ENEECO)
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1. Modeling and forecasting the trend-seasonal components Modeling the LTSC

Modeling the LTSC
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1. Modeling and forecasting the trend-seasonal components Modeling the LTSC

Adequate seasonal decomposition is important !
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1. Modeling and forecasting the trend-seasonal components Case Study I

Case study I
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1. Modeling and forecasting the trend-seasonal components Case Study I

Forecasting a wavelet-based LTSC
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1. Modeling and forecasting the trend-seasonal components Case Study I

Forecasting a wavelet-based LTSC cont.
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1. Modeling and forecasting the trend-seasonal components Case Study I

Forecasting a wavelet-based LTSC cont.
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1. Modeling and forecasting the trend-seasonal components Case Study I

Forecasting a wavelet-based LTSC cont.
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1. Modeling and forecasting the trend-seasonal components Case Study I

Wavelets beat sines and monthly dummies

The number of
times models from a
given family are
ranked in the top 5,
20 and 50 of all 304
models according to
GM(MAEh,∗),
GM(MSEh,∗) and
MAPEh,∗ for each
of the six forecast
horizons h = 1,...,6
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1. Modeling and forecasting the trend-seasonal components Case Study II

Case study II

Rafa l Weron (Wroc law, Poland) Advances in forecasting of electricity prices 09.06.2016, ISS Rome 22 / 80



1. Modeling and forecasting the trend-seasonal components Case Study II

The Hodrick-Prescott (1980, 1997) filter
A simple alternative to wavelets

Originally proposed for decomposing GDP into a long-term
growth component and a cyclical component

Returns a smoothed series τt for a noisy input series yt :

min
τt

{
T∑
t=1

(yt − τt)2 + λ
T−1∑
t=2

[
(τt+1 − τt)− (τt − τt−1)

]2
}
,

Punish for:

deviating from the original series
roughness of the smoothed series
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1. Modeling and forecasting the trend-seasonal components Case Study II

HP-smoothing for EEX and PJM spot prices
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1. Modeling and forecasting the trend-seasonal components Case Study II

HP provides a better fit than the nominal LTSC

Identification technique (estimated LTSC model)
HP filter-based (λ = ...) Wavelet-based sin-

5x104 105 5x105 106 5x106 107 5x107 S5 S6 S7 S8 EWMA

Nord Pool market (3 years: 01.01.2011–31.12.2013)

S5 18.7 33.5 60.0 68.0 89.4 103.1 138.6 0.0 73.4 83.6 174.7 92.1
S6 19.3 11.2 0.0 1.2 23.8 42.0 87.8 49.1 10.8 16.0 134.9 43.6
S7 38.9 29.4 10.0 4.3 12.1 29.1 81.4 71.8 29.5 0.0 140.0 34.2
S8 92.8 81.4 56.0 45.8 24.4 16.1 0.0 132.3 83.7 40.6 10.0 55.6
sin 22.8 16.2 3.7 0.0 3.1 13.4 50.4 48.7 19.5 2.2 97.5 11.6

EEX market (5 years: 02.01.2006–02.01.2011)

S5 5.1 16.4 51.5 65.8 91.5 102.5 130.9 0.0 59.3 105.3 155.7 106.1
S6 5.3 0.0 10.4 23.1 55.5 72.4 115.2 37.7 0.2 75.8 148.4 90.6
S7 40.4 29.1 6.9 0.0 3.6 20.4 77.9 84.8 35.1 4.4 118.3 78.0
S8 81.2 67.3 38.9 28.3 7.1 0.0 1.1 134.6 72.1 28.2 2.6 87.3
sin 10.0 4.2 0.0 2.1 13.3 22.7 52.7 41.2 14.3 17.7 75.5 47.6

PJM market (8 years: 01.01.2001–04.01.2009)

S5 0.0 6.9 32.1 44.1 68.9 77.9 98.0 4.1 37.0 79.8 106.3 79.7
S6 7.2 0.8 3.7 14.6 46.0 58.4 86.2 38.9 0.0 61.6 101.1 71.9
S7 46.4 34.8 11.7 4.2 1.6 10.2 46.5 91.0 37.5 0.0 66.1 63.4
S8 99.4 83.8 52.1 40.1 16.4 8.7 7.0 158.9 87.2 35.8 0.0 85.4
sin 12.7 6.7 0.0 0.6 8.5 14.5 34.5 43.2 15.0 16.4 38.1 38.7
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1. Modeling and forecasting the trend-seasonal components Case Study III

Case study III
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1. Modeling and forecasting the trend-seasonal components Case Study III

LTSC and short-term price forecasting

Can the long-term trend-seasonal component impact short-term
(day-ahead) electricity price forecasts?
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1. Modeling and forecasting the trend-seasonal components Case Study III

The setup

Two 2-year long, hourly test periods

GEFCom2014
Nord Pool

Two autoregressive model structures for day-ahead forecasting

Two well-performing LTSC model classes

Wavelets
The Hodrick-Prescott filter

Two models combining 24 hour-ahead extrapolation of an
estimated LTSC with the forecasts of autoregressive models
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1. Modeling and forecasting the trend-seasonal components Case Study III

The data: GEFCom2014
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1. Modeling and forecasting the trend-seasonal components Case Study III

The data: Nord Pool (2013-2015)
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1. Modeling and forecasting the trend-seasonal components Case Study III

The benchmarks: Näıve and ARX

The näıve (or persistent) benchmark

P̂t+h|t = Pt+h−24 for Tuesday to Friday

P̂t+h|t = Pt+h−168 for Saturday to Monday

ARX for the log-price pt = logPt , originally proposed by
Misiorek et al. (2006, SNDE):

pt = φ1pt−24 +φ2pt−48 +φ7pt−168 +φ8mpt +ψ1zt +
3∑

i=1

diDi +εt

mpt is the minimum of the previous day’s 24 hourly log-prices
D1,D2,D3 are dummies for Monday, Saturday and Sunday
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1. Modeling and forecasting the trend-seasonal components Case Study III

The benchmarks: mARX

Multi-day ARX (mARX), an extension of ARX used in
GEFCom2014 by Maciejowska & Nowotarski (2016, IJF):

pt =

(
3∑

i=0

φ1,iDi

)
pt−24 + φ2pt−48 + φ3D1pt−72 + φ7pt−168

+ φ8mpt + ψ1zt +
3∑

i=1

diDi + εt

Uses different model structures for different days of the week,
not only different parameter sets
D0 ≡ 1 and D1pt−72 accounts for the autoregressive effect of
Friday’s prices on the prices for the same hour on Monday
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1. Modeling and forecasting the trend-seasonal components Case Study III

The Seasonal Component AR (SCAR) model

1 Decompose log-prices pt into a LTSC, Tt , and a stochastic
component with short-term (weekly) periodicities, Xt

2 Model Xt using one of the ARX or mARX models
3 Model Tt :

Using one of the 10 wavelet smoothers (S5, ...,S14) or one of
the 8 HP filters (λ = 1× 108, ..., 5× 1011)
Compute a persistent day-ahead prediction: T̂t∗+1 ≡ Tt∗−23,
..., T̂t∗+24 ≡ Tt∗ , where t∗ is the time index of the last
observation in the calibration window

4 Compute SCAR forecast:

p̂t+h|t = T̂t+h|t + X̂t+h|t = Tt + X̂ARX
t+h|t
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1. Modeling and forecasting the trend-seasonal components Case Study III

GEFCom2014: Average WMAE over all weeks

GEFCom2014

SCARX
Wavelet approximation

S5 S6 S7 S8 S9 S10 S11 S12 S13 S14
13.530 13.686 12.466 11.558 11.378 11.264 11.263 11.112 11.221 11.245

HP filter λ

1 × 108 5 × 108 1 × 109 5 × 109 1 × 1010 5 × 1010 1 × 1011 5 × 1011

11.775 11.586 11.527 11.425 11.396 11.376 11.362 11.287
mSCARX

Wavelet approximation
S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

13.482 13.647 12.233 11.379 11.216 11.213 11.312 10.901 10.976 11.130
HP filter λ

1 × 108 5 × 108 1 × 109 5 × 109 1 × 1010 5 × 1010 1 × 1011 5 × 1011

11.580 11.414 11.369 11.347 11.381 11.548 11.612 11.598
Benchmarks

Näıve ARX mARX
14.716 11.232 11.252

WMAE errors smaller (better) than those of the ARX and mARX benchmarks are in bold.
Underlined are the results for the best performing model in each part of the table.

Note, that in Nowotarski & Weron (2016) the WMAE error for the Näıve benchmark was
mistakenly given as 20.475. With the correct value of WMAE the Näıve benchmark is still
much worse than any of the other models
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1. Modeling and forecasting the trend-seasonal components Case Study III

Nord Pool: Average WMAE over all weeks

Nord Pool

SCARX
Wavelet approximation

S5 S6 S7 S8 S9 S10 S11 S12 S13 S14
9.949 9.988 8.598 8.389 8.309 8.332 8.417 8.453 8.463 8.475

HP filter λ

1 × 108 5 × 108 1 × 109 5 × 109 1 × 1010 5 × 1010 1 × 1011 5 × 1011

8.665 8.697 8.718 8.760 8.766 8.766 8.757 8.729
mSCARX

Wavelet approximation
S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

9.954 10.049 8.558 8.286 8.157 8.154 8.331 8.471 8.428 8.361
HP filter λ

1 × 108 5 × 108 1 × 109 5 × 109 1 × 1010 5 × 1010 1 × 1011 5 × 1011

8.516 8.504 8.513 8.526 8.530 8.561 8.578 8.644
Benchmarks

Näıve ARX mARX
9.661 8.500 8.341

WMAE errors smaller (better) than those of the ARX and mARX benchmarks are in bold.
Underlined are the results for the best performing model in each part of the table.

The Näıve benchmark is better than the (m)SCARX models with the most volatile LTSCs (S5,
S6), but much worse than any of the other models. Note, that in Nowotarski & Weron (2016)
the WMAE error for the Näıve benchmark was mistakenly given as 12.663
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1. Modeling and forecasting the trend-seasonal components Case Study III

Diebold-Mariano test

DM tests using absolute errors of the model forecast:

L(εt) = |εt | = |Pt − P̂t |

For each best performing SCAR-type model in its class:

SCARX-S12, -HP5×1011 , mSCARX-S12, -HP5×109

for GEFCom2014,
SCARX-S9, -HP1×108 , mSCARX-S10, -HP5×108

for Nord Pool,

For each hour independently calculate the loss differential series:

dt = L(εmodel
t )− L(εbenchmark

t )

Rafa l Weron (Wroc law, Poland) Advances in forecasting of electricity prices 09.06.2016, ISS Rome 36 / 80



1. Modeling and forecasting the trend-seasonal components Case Study III

DM test vs. the (m)ARX benchmarks
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Agenda

A look into the future of load/price forecasting

1 Modeling and forecasting the trend-seasonal components

2 Beyond point forecasts – probabilistic forecasts
3 Combining forecasts

Point forecasts
Probabilistic forecasts

4 Multivariate factor models

5 Guidelines for evaluating forecasts
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2. Beyond point forecasts

Beyond point forecasts

Variability of the electricity demand becoming a challenge to the
utility industry in the smart grid era

Extreme variability of electricity prices

Ability to plan different strategies for the range of possible
outcomes indicated by the probabilistic forecast

Useful in practice → risk management and decision-making

GEFCom2012 (point) → GEFCom2014 (probabilistic forecasts)
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2. Beyond point forecasts

GEFCom2012 GEFCom2012

• Two tracks

• Participants

– 2000+ entries

– 200+ teams

– 30+ countries

8
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2. Beyond point forecasts

GEFCom2014
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2. Beyond point forecasts

GEFCom2014

Incremental data sets released on weekly basis

Price Track:

287 contestants
Submit 99 quantiles for 24h load periods of the next day
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2. Beyond point forecasts

GEFCom2014 Price Track
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2. Beyond point forecasts

GEFCom2014 Price Track
Top winning teams

1 Pierre Gaillard, Yannig Goude, Raphaël Nedellec (EDF R&D, F)

2 Katarzyna Maciejowska, Jakub Nowotarski (Wroc law UT, PL)

3 Grzegorz Dudek (Czȩstochowa UT, PL)

4 Zico Kolter, Romain Juban, Henrik Ohlsson, Mehdi Maasoumy
(C3 Energy, USA)

5 Frank Lemke (KnowledgeMiner Software, D)
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2. Beyond point forecasts

GEFCom2014 Price Track: (1st and) 2nd place for QRA!
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Agenda

A look into the future of load/price forecasting

1 Modeling and forecasting the trend-seasonal components

2 Beyond point forecasts – probabilistic forecasts
3 Combining forecasts

Point forecasts
Probabilistic forecasts

4 Multivariate factor models

5 Guidelines for evaluating forecasts
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3. Combining forecasts

Forecast combinations, forecast/model averaging

The idea goes back to the 1960s to the seminal papers of
Bates and Granger (1969) and Crane and Crotty (1967)

In electricity markets:

Electricity demand or transmission congestion forecasting
(Bunn, 1985a; Bunn and Farmer, 1985; Løland et al., 2012;
Smith, 1989; Taylor, 2010; Taylor and Majithia, 2000)
Only recently applied in the context of electricity price
forecasting (EPF): Bordignon et al. (2013, ENEECO),
Nowotarski et al. (2014, ENEECO), Weron (2014, IJF) and
Raviv et al. (2015, ENEECO)
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3. Combining forecasts

See also
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3. Combining forecasts

Point forecast averaging: The idea

f1

f2

fN

…
Weights

estimation
fC

In
d
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id
u
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re
ca
st
s

Combined
forecast

Rafa l Weron (Wroc law, Poland) Advances in forecasting of electricity prices 09.06.2016, ISS Rome 49 / 80



3. Combining forecasts Case Study IV

Case study IV
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3. Combining forecasts Case Study IV

Combining price forecasts
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3. Combining forecasts Case Study IV

Summary of results

Summary statistics for 6 individual and 3 averaging methods: WMAE is the mean value of
WMAE for a given model (with standard deviation in parentheses), # best is the number of
weeks a given averaging method performs best in terms of WMAE, and finally m.d.f.b. is the
mean deviation from the best model in each week. The out-of-sample test period covers 30
weeks (5.6.2013–31.12.2013).

Individual models Forecast combinations
AR TAR SNAR MRJD NAR FM Simple CLS LAD

WMAE 5.03 5.07 4.77 4.98 4.88 5.36 4.47 4.29 4.92
(3.40) (3.53) (3.26) (3.17) (1.62) (3.17) (2.87) (1.88) (2.41)

# best 1 3 4 1 2 4 8 6 1
m.d.f.b. 1.01 1.05 0.75 0.96 0.86 1.34 0.45 0.27 0.89
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3. Combining forecasts QRA

Interval forecast averaging

For point forecasts: fc =
∑N

i=1 wi fi
(e.g. a linear regression model)

For interval forecasts the above formula does not hold

A linear combination of q-th quantiles is not the q-th quantile
of a linear combination of random variables

xqc 6=
N∑
i=1

wix
q
i

→ Need for development of new approaches
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3. Combining forecasts QRA

Quantile Regression Averaging (QRA) defined
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3. Combining forecasts QRA

Quantile Regression Averaging: The idea

…

Quantile regression:
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Combined interval
forecast (e.g. for 
𝒒=0.05 & 0.95)

min
𝜷𝒒
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𝑞 − 1𝑦𝑡<𝑿𝒕𝜷𝒒
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𝐿 ,  𝑦𝑡
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 𝑦2,𝑡

 𝑦𝑚,𝑡

𝑿𝒕 = 1,  𝑦1,𝑡 , … ,  𝑦𝑚,𝑡

𝜷𝒒 - vector of parameters 
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3. Combining forecasts QRA

Quantile regression
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3. Combining forecasts QRA

Quantile regression
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3. Combining forecasts QRA

How does the score function look like?

For vector Xt = [1, ŷ1,t , ..., ŷm,t ] of point forecasts, i.e. explanatory
variables, weights βq are estimated by minimizing:

min
βq

 ∑
{t:yt≥Xtβq}

q|yt −Xtβq |+
∑

{t:yt<Xtβq}

(1− q)|yt −Xtβq |


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3. Combining forecasts Case Study V

Case study V
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3. Combining forecasts Case Study V

QRA at work

Six individual point forecasting models:

Autoregression (AR)
Threshold AR (TAR)
Semi-parametric AR (SNAR)
Mean-reverting jump diffusion (MRJD)
Non-linear AR neural network (NAR)
Factor model (FM)
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3. Combining forecasts Case Study V

The data: Nord Pool (2012-2013)

Aug 08, 2012 Jul 03, 2013 Dec 31, 2013
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Seven months for calibration of individual models

Four weeks for calibration of quantile regression

26 weeks for evaluation of interval forecasts
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3. Combining forecasts Case Study V

Evaluation of forecasts

50% and 90% two-sided day-ahead prediction intervals

Two benchmark models: AR and SNAR

Christoffersen’s (1998, IER) test for unconditional and
conditional coverage

The focus on the sequence: It =

{
1 yt ∈ [ŷL

t , ŷ
U
t ]

0 yt 6∈ [ŷL
t , ŷ

U
t ]

Conditional Coverage test Unconditional Coverage test

(UC + independece)
Asymptotically χ2(2) Asymptotically χ2(1)
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3. Combining forecasts Case Study V

Results: Unconditional coverage

PI AR SNAR QRA
Unconditional coverage

50% 77.50 61.93 49.77
90% 97.53 96.41 89.33

Mean width (STD of interval width)
50% 4.55 (1.34) 2.76 (0.61) 2.23 (0.81)
90% 11.14 (3.31) 9.33 (2.45) 6.78 (2.20)
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3. Combining forecasts Case Study V

Results: Christoffersen’s test
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3. Combining forecasts AI world

In the ‘AI world’ ...

Committee machines, ensemble averaging, expert aggregation:

Guo and Luh (2004) combine a RBF network (23 inputs and six
clusters) and a MLP (55 inputs and eight hidden neurons) to
compute daily average on-peak electricity price for New England
Forecast combinations and committee machines seem to evolve
independently, with researchers from both groups not being
aware of the parallel developments !
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3. Combining forecasts AI world

GEFCom2014 Solar and Wind Tracks: 2nd place

+
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3. Combining forecasts FQRA

FQRA: When the number of predictors is large

…

Quantile
regression:…

k <m factors 
extracted from a panel 
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3. Combining forecasts Case Study VI

Case Study VI
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3. Combining forecasts Case Study VI

FQRA in action
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32 individual forecasting models

One year for calibration of individual models
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One year for evaluation of interval forecasts
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3. Combining forecasts Case Study VI

Evaluation of forecasts

50% and 90% two-sided day-ahead prediction intervals

Three methods: QRA, FQRA and ARX (benchmark)

Christoffersen’s (1998) test for unconditional and conditional
coverage

Winkler score for a symmetric (1− α)× 100% prediction
interval:

Wt =


δt dla yt ∈ [ŷL

t , ŷ
U
t ],

δt + 2
α

(ŷL
t − yt) dla yt < ŷL

t ,

δt + 2
α

(yt − ŷU
t ) dla yt > ŷU

t ,

where δt = ŷU
t − ŷL

t is the interval’s width
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3. Combining forecasts Case Study VI

Results: Christoffersen’s test
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3. Combining forecasts Case Study VI

Results: Winkler score

6 12 18 24 30 36 42 48
−5%

0%
5%

10%
15%
20%
25%

R
el

at
iv

e 
W

in
kl

er
sc

or
e,

 5
0%

 P
I

 

 
1 − W

h
QRA/W

h
ARX 1 − W

h
FQRA/W

h
ARX

6 12 18 24 30 36 42 48
−5%

0%
5%

10%
15%
20%
25%

Load period (h)

R
el

at
iv

e 
W

in
kl

er
sc

or
e,

 9
0%

 P
I

Rafa l Weron (Wroc law, Poland) Advances in forecasting of electricity prices 09.06.2016, ISS Rome 71 / 80



3. Combining forecasts Case Study VII

Bonus: Case Study VII
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3. Combining forecasts Case Study VII

Combining sister load forecasts

Variable selection may be difficult in load forecasting

Sister models – constructed by different subsets of variables
with overlapping components

Here: 2 or 3 years for calibration and 4 ways of partitioning
training and validation periods

ŷt = β0 + β1Mt + β2Wt + β3Ht + β4WtHt + f (Tt) +

+
∑
d

f (T̃t,d) +
∑
lag

f (Tt−lag ),

Sister forecasts are generated from sister models
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3. Combining forecasts Case Study VII

Sister models

ŷt = β0 +

calendar effects︷ ︸︸ ︷
β1Mt + β2Wt + β3Ht + β4WtHt +

temp. dependence︷ ︸︸ ︷
f (Tt) +

+
∑
d

f (T̃t,d) +
∑
lag

f (Tt−lag )︸ ︷︷ ︸
recency effect

,

where:

f (Tt) = β5Tt + β6T
2
t + β7T

3
t + β8TtMt + β9T

2
t Mt+

+ β10T
3
t Mt + β11TtHt + β12T

2
t Ht + β13T

3
t Ht

T̃t,d =
1

24

24d∑
lag=24d−23

Tt−lag
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3. Combining forecasts Case Study VII

The data
(from the load forecasting track of GEFCom2014)

2 or 3 years for calibration of sister (individual) models

1 year for validation of sister (individual) models (variable selection)

1 year for validation of probabilistic forecasts (best models selection)

1 year for testing probabilistic forecasts
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3. Combining forecasts Case Study VII

Benchmarks

Two naive benchmarks

Scenario generation from historical weather data, no recency
effect (Vanilla)
Quantiles interpolated from 8 individual forecasts (Direct)

Benchmarks from individual models

8 individual models (Ind) with residuals’ distribution
Best Individual (BI) individual model according to MAE
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3. Combining forecasts Case Study VII

Evaluation of forecasts

Pinball loss function for 99 percentiles (as in GEFCom2014)

Pt =

{
(1− q)(ŷq

t − yt), yt < ŷq
t

q(yt − ŷq
t ), yt ≥ ŷq

t

Winkler score for 50% and 90% two-sided day-ahead PI:

Wt =


δt dla yt ∈ [ŷL

t , ŷ
U
t ],

δt + 2
α

(ŷL
t − yt) dla yt < ŷL

t ,

δt + 2
α

(yt − ŷU
t ) dla yt > ŷU

t ,

where δt = ŷU
t − ŷL

t is the interval’s width
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3. Combining forecasts Case Study VII

Results: Test period

Model class Pinball Winkler (50%) Winkler (90%)
QRA(8,183) 2.85 25.04 55.85
Ind(1,91) 3.22 26.35 56.38
BI(-,365) 3.00 26.38 57.17
Direct 3.19 26.62 94.27
Vanilla 8.00 70.51 150.0

Sister forecasts easy to generate

No need for independent expert forecasts

Simple way to leverage from point to probabilistic forecasts
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Conclusions

Where are we now?
(Hong et al., 2016, IJF)
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Conclusions

Take-home message(s)

Combining point forecasts is a robust technique, generally
improving the performance
The new trend is probabilistic forecasting

See: Recent advances in electricity price forecasting: A review
of probabilistic forecasting (RePEc working paper)

Combining interval (or density) forecasts is more tricky than
combining point forecasts
QRA is a simple way to leverage from point
to probabilistic forecasts
... do not forget about the importance of
getting the seasonal components right
... forecast evaluation is a critical issue
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