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Introduction Electricity markets and prices

Markets for electricity in Europe
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Introduction Electricity markets and prices

in North America and Australia

v
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Electricity markets and prices
Electricity price time series

Seasonality, mean-reversion and price spikes
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Electricity markets and prices
The electricity ‘spot’ (day-ahead) price
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Introduction Electricity markets and prices

Supply and demand, renewables and negative prices

Price in EUR/MWh
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Electricity markets and prices
Prices for different load periods

Strongly correlated but seem to follow different data generating processes (DGPs)
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Introduction Electricity markets and prices

First read on electricity price forecasting (EPF)

R.Hyndman: “this paper alone is responsible for 0.7 of the current IF;y=2.642" ;-)

International Journal of Forecasting 30 (2014) 1030- 1081

Contents lists available at ScienceDirect

International Journal of Forecasting

journal homepage: www.elsevier.com/locatelijforecast

Review
Electricity price forecasting: A review of the state-of-the-art @m;m
with a look into the future

Rafat Weron

Insticute of Organization and Management, Wrociaw University of Technology, Wroclaw, Poland

ARTICLE INFO ABSTRACT

Keywords: Avariety of methods and ideas have been tried for elecricity price
Blecticy price orecasting the last 15 years, with varying degrees of success. This review artic
ooty complexity of available solutions, their strengths and weaknesses,
Autoregression and threats that the forecasting tools offer or thar may be encoun|

looks ahead and speculates on the directions EPF will or should talf

Neural network a N 3
Factor model or so. In particular, it postulates the need for objective comparative|
Forecast combination (i) the same datasets, (ii) the same robust error evaluation procedu
Probabilistic forecast testing of i f one model’s another
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Motivation
A look into the future of EPF

EPF directions in the next decade (according to Weron, 2014, 1JF):
© Modeling and forecasting the trend-seasonal components
© Beyond point forecasts — probabilistic forecasts
© Combining forecasts
@ Multivariate factor models
© Guidelines for evaluating forecasts
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Introduction Motivation

Role of the long-term seasonal component (LTSC)

for short-term EPF

@ Significant prediction accuracy gains possible for linear
regression models (Nowotarski & Weron, 2016, ENEECO):
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@ Unknown effects for non-linear (e.g., ANN) models

o Is this phenomenon more general?
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Agenda

@ Trend-seasonal components

o Wavelets
o The Hodrick-Prescott (HP) filter
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Wavelets
Wavelets

Decomposition of a signal
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Wavelets
Wavelets

Decomposition of a signal
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Wavelets
Wavelets

Decomposition of a signal

Approximation 7 level
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Sample fits to Nord Pool data
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The Hodrick-Prescott (1980, 1997) filter

A simple alternative to wavelets

@ Originally proposed for decomposing GDP into a long-term
growth component and a cyclical component

@ Returns a smoothed series 7; for a noisy input series y;:

T T-1
2
min Z(yt — 7})2 + A Z |:(7't+1 - Tt) - (Tt - 7_1:71) )
o= t=2
Punish for:

e deviating from the original series
e roughness of the smoothed series
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Sample fits to EEX and PJM data

(Weron & Zator, 2015, ENEECO)
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Datasets: GEFCom 2014

100 GEFCom2014 data (1.1.2011, hour 1 - 17.12.2013, hour 24)
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Datasets are the same as in Nowotarski & Weron (2016, ENEECO)
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Datasets: Nord Pool
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Datasets are the same as in Nowotarski & Weron (2016, ENEECO)
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Long-Term Seasonal Components (LTSCs)

Like in Nowotarski & Weron (2016, ENEECO), we consider 18
LTSCs from two categories:

o Wavelet filters S5, Sg, . . ., S14, ranging from ‘daily’ smoothing
(Ss — 2° hours) up to ‘biannual’ (S14 — 2 hours)
o Models with wavelet filters are denoted by suffixes -S
o HP-filters with A = 108 5- 108, 10°,...,5- 10", also ranging
from ‘daily’ up to ‘biannual’ smoothing
e Models with HP filters are denoted by suffixes -HP
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ARX and SCARX models
Benchmark: The ARX model

For the log-price, i.e., pyn = log(Pg4,), the model is given by:

Pd.h = PriPd-1,h + Bn2Pd—2.n + Bn3Pd—1.4 + PhaPd—1,min

autoregressive effects non-linear effect
3
+ Bhsze + E ~ BrirsDi+ean (1)
—— i=1
~—_———

load weekday dummies

® Pd_1min IS Yesterday's minimum hourly price
@ z; is the logarithm of system load/consumption

@ Dummy variables Dy, D, and Ds refer to Monday, Saturday and
Sunday, respectively
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The SCAR modeling framework

(Nowotarski & Weron, 2016, ENEECO)

The Seasonal Component AutoRegressive (SCAR) modeling
framework consists of the following steps:

@ (a) Decompose the series in the calibration window into
the LTSC T4 and the stochastic component qq 5
(b) Decompose the exogenous series in the calibration window
using the same type of LTSC as for prices

©Q Calibrate the ARX model to g; and compute forecasts for the
24 hours of the next day (24 separate series)
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ARX and SCARX modiel
The SCAR modeling framework cont.
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@ Add stochastic component forecasts §411,5 to persistent
forecasts Tg441,, of the LTSC to yield log-price forecasts pyi1 4

@ Convert them into price forecasts of the SCARX model, i.e.,
Pgi1,n = exp (ﬁd+1,h)
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Sample LTSC and stochastic component forecasts
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ANNs in EPF
ANNs in other EPF studies

o Variety of ANN implementations, as well as considered inputs,
making it impossible to compare with commonly used methods
based on linear regression

@ Several studies that acknowledge the need of removing seasonal
components from time series for neural network models:

o Andrawis et al. (2011)
e Zhang and Qi (2005)
o Keles et al. (2016), the only one in the context of EPF
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ANNs in EPF
ANN: Based on Matlab’'s NARXnet

x(t) Hidden

y(t+1)

y(t)

@ One hidden layer with 5 neurons and sigmoid activation functions
@ Inputs identical as in the ARX model

@ Trained using Matlab’s trainlm function, utilizing the
Levenberg-Marquardt algorithm for supervised learning
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Seasonal Component ANN (SCANN)

The SCANN modeling framework is a generalization of the ANN
model, analogous to the SCAR framework for the ARX model:

Q@ (a) Decompose the series in the calibration window into
the LTSC T4 and the stochastic component qq 5
(b) Decompose the exogenous series in the calibration window
using the same type of LTSC as for prices

©Q Calibrate the ANN model to g; and compute forecasts for the
24 hours of the next day (24 separate series)

@ Add stochastic component forecasts §q+1,, to persistent
forecasts 7A'd+1,h of the LTSC to yield log-price forecasts pyi1.5

@ Convert them into price forecasts of the SCANN model, i.e.,
FA’d+1,h = exp (Pd-+1,n)
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ANNs in EPF
Number of hidden neurons
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There is no universally optimal number, but the errors are smallest
for 4 to 6 neurons in the hidden layer
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Committee machines of (SC)ANN networks
Committee machines of (SC)ANN networks

o Every forecast yields slightly different results = two ‘model
categories’ are considered:
o ANN; - the ‘expected’ result for a single ANN network, an
average of error scores across separate runs
o ANNs; — a forecast average of 5 runs (hour-by-hour) with
identical parameters, a so-called committee machine

@ Analogously:

o SCANN; — the ‘expected’ result for a single SCANN network
o SCANN5; — a committee machine of 5 SCANNs
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Committee machines of (SC)ANN networks
Committee machines of (SC)ANN networks
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Committee machines of (SC)ANN networks
Sample gains from using committee machines
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@ Forecast errors roughly scale as a power-law function of the
number of networks in a committee machine

@ We should use as large committee machines as we can ...
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Committee machines of (SC)ANN networks
Sample gains cont.

@ ... however, the time needed may be substantial, e.g., for
generating forecasts for the next 24 hours:

Model | ARX | SCARX-HPyg: | SCARX-Sy | ANN; | ANNs
Time |[86ms| 135ms | 373ms | 7.6s | 38.2s

@ SCANN times are omitted here, because LTSC computation is
negligible compared to training the ANN
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Case study Results

Weekly-weighted Mean Absolute Error (WMAE)

@ Following Conejo et al. (2005), Weron & Misiorek (2008)
and Nowotarski et al. (2014), among others, we use:

1 1 Sun 24
WMAE, = — MAE,, = — ’P _p )
Puss 168 Puee ;M: e
o where Pigg = 168 3”",\/,0” i4:1 P
1 Wmax
WMAE = WMAE,,
s 2

@ where w;,,, = 103 for GEFCom and 104 for Nord Pool
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Resulis
Average WMAE for GEFCom2014

Table 1: Average WMAE in percent for all 103 weeks of the GEFCom2014 out-of-sample test period (upper half) or
all 104 weeks of the Nord Pool out-of-sample test period (lower half). Results for the best performing model in each
row are emphasized in bold. Note, that results for the SCARX models are the same as in Uniejewski et al. (2017).

GEFCom2014

Benchmarks
Naive ARX  ANN; ANNjs
14716 11232 12256  11.214

SCARX / SCANN with wavelet approximation of price and load

Ss Se S7 Ss So Sho Su Si2 Si3 Sia
SCARX 12917 12226 11.106  10.849  10.732 10.776  10.843 10.824  11.100  11.072
SCANN; 13.249 1 5 11.438  11.066 11.085 11.216 11.363 11.322 11.784  11.838
SCANN; 13.072 12.294 11.044 10.598  10.481 10.516 10.627 10.547 10.948 10.983

SCARX / SCANN with HP filter on price and load (1)
108 5108 100 5-10° 1010 5.0 1o 510"
SCARX 10.519  10.447  10.437  10.495 10.559 10.798 10.897 11.060
SCANN; 10957 10.859 10.893 11.044 11159  11.534 11.581 11.896
SCANNs 10403 10230 10.224  10.327 10412 10.678 10.713  10.872
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Resulis
Average WMAE for Nord Pool

Table 1: Average WMAE in percent for all 103 weeks of the GEFCom2014 out-of-sample test period (upper half) or
all 104 weeks of the Nord Pool out-of-sample test period (lower half). Results for the best performing model in each
row are emphasized in bold. Note, that results for the SCARX models are the same as in Uniejewski et al. (2017).

Nord Pool

Benchmarks
Naive ARX ANN; ANN;
9.661 8.500 9.517 8.509

SCARX/ SCANN with wavelet approximation of price and load
Ss Se S7 Sy So S0 Sn S S13 Sia
SCARX 9.834 9.761 8.411 8.205 8.147 8.169 8319 8.351 8.484 8.389
SCANN;  10.004 9.750 8.597 8.342 8.359 8.323 8.570 8.849 9.035 9.185
SCANN; 9.736 9.465 8.182 7.921 7.876 7.789 7.956 8.162 8.270 8.347

SCARX /SCANN with HP filter on price and load (1)
108 5-10° 100 5-10° 1010 5.10' 10" 5.0
SCARX 8475 8512 8536 8601  8.621 8.655  8.663  8.670
SCANN, 8575 8682 8667 8613 8645 8800 8907  9.180
SCANNs 8154 8203 8144 8088 8103 8169 8215  84I3
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Resulis
Aggregate results of SCANN performance

GEFCom2014
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Note: Step 1(b) is important (green vs. yellow)!
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The Diebold-Mariano test (1995)

@ We define the error function as

24
L(zg) = llealls = Y |Pan — Pasl
h=1

@ For each pair of models we compute the loss differential
Dd — L({S?‘Jdelx) _ L(E—:ZOdelY)

e Hypothesis Hy:E(D,) < 0, modelx outperforms modely

@ Reversed hypothesis H':E(Dy) > 0, modely outperforms
modelx
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Results
Diebold-Mariano test results

||<||1: over 24h, GEFCom2014 ||«||1: over 24h, Nord Pool
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Conclusions

@ Using Seasonal Component ANN (SCANN) models can yield
statistically significant improvement over the ANN benchmark

o SCANNj5 returns 0.72-0.99% lower WMAE than ANNs
@ The accuracy gains from using LTSC are greater in ANN models
than in regression models
o SCARX models yield only a 0.35-0.80% improvement in
WMAE vs. the ARX benchmark
o Forecast averaging is crucial in outperforming the SCARX
model
o SCANNj5 vyields 0.21-0.36% lower WMAE
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