Probabilistic electricity price forecasting (EPF)
... and related topics

Rafat Weron*

Department of Operations Research
Wroctaw University of Science and Technology (PWr), Poland
http://www.ioz.pwr.wroc.pl/pracownicy/weron /

*Based on work with Jakub Nowotarski (PWr & BNY Mellon), Grzegorz Marcjasz (PWr) and Bartosz Uniejewski (PWr)

Rafat Weron (Wroctaw, PL) Probabilistic EPF 20.11.2017, NBP Workshop 1/51


http://www.ioz.pwr.wroc.pl/pracownicy/weron/

Introduction Electricity markets and prices

Markets for electricity in Europe
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Introduction Electricity markets and prices

. in North America and Australia
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Electricity markets and prices
The day-ahead market
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Electricity markets and prices
Electricity price time series

Seasonality, mean-reversion and price spikes
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Electricity markets and prices
A closeup on two weeks in December 2016
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Introduction Electricity markets and prices

Supply and demand, renewables and negative prices
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Introduction Modeling frameworks

Day-ahead point forecasting: Univariate ...
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Introduction Modeling frameworks

... or multivariate?
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Modeling frameworks
Day-ahead point forecasting: Regression

Electricity price for day d and hour h:

Yanr = Bni~+ BnoYda—1,n + BrzYa—2,n + BraYa—7,n
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Modeling frameworks
... or neural nets?

Input Hidden Ouput
layer layer layer
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Introduction Modeling frameworks

Variable (feature) selection using LASSO
(Ziel & Weron, 2016, RePEc)
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Introduction Modeling frameworks

Variable (feature) selection using LASSO cont.
Ziel & Weron, 2016, RePEc
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Introduction Modeling frameworks

First read on electricity price forecasting (EPF)

R.Hyndman: “this paper alone is responsible for 0.7 of the current IF,y=2.642" ;-)

International Journal of Forecasting 30 (2014) 1030- 1081

Contents lists available at ScienceDirect

International Journal of Forecasting

S
ELSEVIEF

journal homepage: www.elsevier.com/locatelijforecast

=l

Review

Electricity price forecasting: A review of the state-of-the-art @m;m
with a look into the future

Rafat Weron

Insticute of Organization and Management, Wrociaw University of Technology, Wroclaw, Poland

ARTICLE INFO ABSTRACT
Keywords: Avariety of methods and ideas have been tried for elecricity price
Electricity price forecasting the last 15 years, with varying degrees of success. This review artic}

Day-ahead market
Seasonality
Autoregression

complexity of available solutions, their strengths and weaknesses,
and threars that the forecasting tools offer or that may be encoun}

Neural network looks ahead and speculates on the directions EPF will or should tal
Factor model or so. In particular, it postulates the need for objective comparative
Forecast combination (i) the same datasets, (ii) the same robust error evaluation procedu

babilistic forecast testing of i f one model’s another
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Agenda

@ Beyond point forecasts
= probabilistic forecasts

o
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1. Beyond point forecasts Probabilistic forecasting

A new hype: Point — probabilistic forecasting

Electricity price in EUR/MWh

Electricity price in EUR/MWh

Rafat Weron (Wroctaw, PL)

Probabilistic EPF
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1. Beyond point forecasts Probabilistic forecasting

A (very) recent review of probabilistic forecasting

Renewable and Sustainable Energy Reviews 81 (2018) 1548-1568

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Recent advances in electricity price forecasting: A review of probabilistic
forecasting

Jakub Nowotarski, Rafal Weron®

Department of Operations Research, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland

ARTICLE INFO ABSTRACT

Keywords: Since the inception of competitive power markets two decades ago, electricity price forecasting (EPF) has
Electricity price forecasting gradually become a fundamental process for energy companies’ decision making mechanisms. Over the years,
Probabilistic forecast the bulk of research has concerned point predictions. However, the recent introduction of smart grids and
Reliability renewable integration requirements has had the effect of increasing the uncertainty of future supply, demand
;‘;“:;::1 market and prices. Academics and practitioners alike have come to understand that probabilistic electricity price (and
Autoregression load) forecasting is now more important for energy systems planning and operations than ever before. With this
Neural network paper we offer a tutorial review of probabilistic EPF and present much needed guidelines for the rigorous use of

methods, measures and tests, in line with the paradigm of ‘maximizing sharpness subject to reliability’. The
paper can be treated as an update and a further extension of the otherwise comprehensive EPF review of Weron
[1] or as a standalone treatment of a fascinating and underdeveloped topic, that has a much broader reach than
EPF itself.
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Probabilsic forecasting
How popular is probabilistic EPF: Papers, cites
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Probabilsic forecasting
How popular is probabilistic EPF: Journals

IEEE Transactions on Power Systems
Energy Conversion and Management
Energy Economics

Int. J. Electrical Power & Energy Systems
Electric Power Systems Research

IET Generation Transmission & Distribution
International Journal of Forecasting
Energies

Applied Energy

Neural Computing and Applications

IEEE Transactions on Smart Grid
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(Hong, Pinson, Fan et al., 2016, IJF)

GEFCOM GEFCOM GEFCOM GEFCOM ﬁEEE
2014 2014 2014 2014 @PES

Power & Energy Society®

@ Incremental data sets released on weekly basis
@ Price Track:

e 287 contestants
o Submit 99 quantiles (=percentiles) for 24h of the next day
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1. Beyond point forecasts Global Energy Forecasting Competition 2014
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1. Beyond point forecasts Global Energy Forecasting Competition 2014

Price Track: Top winning teams
(1st and) 2nd place for QRA!

@ Pierre Gaillard, Yannig Goude, Raphaél Nedellec (EDF R&D, F)
@ Katarzyna Maciejowska, Jakub Nowotarski (Wroctaw UT, PL)
@ Grzegorz Dudek (Czestochowa UT, PL)

@ Zico Kolter, Romain Juban, Henrik Ohlsson, Mehdi Maasoumy
(C3 Energy, USA)

@ Frank Lemke (KnowledgeMiner Software, D)
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Agenda

@ Combining forecasts

Point forecasts
Probabilistic forecasts
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2. Combining forecasts Point forecasts

Point forecast averaging: The idea

(%)
® O
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N
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Individual forecasts

Y Combined

@ Dates back to the 1960s and the works of Bates, Crane, Crotty & Granger
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In the ‘Al |d’
n the wor

e Committee machines, ensemble averaging, expert aggregation

@ Weron (2014): Forecast combinations and committee machines
seem to evolve independently, with researchers from both groups
not being aware of the parallel developments !

© 2
- GRADIENT BOUSTING REGRESSOR - e
FRIEDMAN, 1999 v
ROBUST COMBINATION OF WEAK LEARNERS C - v
RESISTANT T0 OVERFITTING,
- ST TO VBTG RANDOM FOREST REGRESSOR
PROVIDES VARIABLE IMPORTANCE
BREIMAN, 2001
QUANTILE REGRESSION CAPABLE!
- o ROBUST COMBINATION OF WEAK LEARNERS
EMPLOYS BOOSTING
RESISTANT T0 OVERFITTING,
FEW TUNING PARAMETERS,

m PROVIDES VARIABLE IMPORTANCE

QUANTILE REGRESSION CAPABLE!
LY
o EMPLOYS BAGGING

G.BARTA,S3 SEMINAR @ PUR, WROCEAW. 16 DEC 2015
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2. Combining forecasts Probabilistic forecasts

Combining probabilistic forecasts is more tricky

o Gneiting & Ranjan (2013): a linearly combined probabilistic
forecast is more dispersed than the least dispersed of the
component distributions

e Helps if the component distributions tend to be underdispersed

@ Lichtendahl et al. (2013): averaging quantiles is better (sharper)

Averaging probabilities ; Averaging quantiles ] Comparison
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Alternative: Quantile Regression Averaging (QRA)

(Submitted on 31.12.2013, 21:26 ;-)

Comput Stat (2015) 30:791-803 @ CrossMatk
DOI 10.1007/500180-014-0523-0
OPEN 8 ACCESS

Computing electricity spot price prediction intervals
using quantile regression and forecast averaging

ORIGINAL PAPER

Jakub Nowotarski - Rafat Weron

Received: 31 December 2013 / Accepted: 6 August 2014 / Published online: 19 August 2014
@© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract We examine possible accuracy gains from forecast averaging in the context
of interval forecasts of electricity spot prices. First. we test whether constructing
empirical prediction intervals (PI) from combined electricity spot price forecasts leads
to better forecasts than those obtained from individual methods. Next, we propose
a new method for constructing PI—Quantile Regression Averaging (QRA)—which
utilizes the concept of quantile regression and a pool of point forecasts of individual
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2. Combining forecasts QRA and FQRA

Quantile Regression Averaging: The idea

Quantile regression:

\
mm[z 1y<x.8, (Yt tiq)

® X = [1-3’1,9 ey }’m,t]

ﬁq - vector of parameters COm bined interval
/ forecast (e.g. for
q=0.05 & 0.95)
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2. Combining forecasts QRA and FQRA

FQRA: When the number of predictors is large

(Maciejowska, Nowotarski & Weron, 2016, IJF)
regressmn
X, = [1-f1t: fkt]

° " ’ a
‘ Combined interval
forecast (e.g. for
1\ q=0.05 & 0.95)
k<m factors

extracted from a panel
of point forecasts

Individual point forecasts
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On the importance of the long-term seasonal component in day-ahead
electricity price forecasting

Jakub Nowotarski, Rafal Weron®

@ Seasonal components :

Contents lists avallable at SeienceDirect

& short-term forecasting =
o SCAR framework
° Ca Se S t u dy :;e;e;;s;lgances in electricity price forecasting: A review of probabilistic
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LTSC and short-term price forecasting

@ Can the long-term trend-seasonal component (LTSC) impact
short-term (day-ahead) electricity price forecasts?

6 T T T T T 1
4 W\M\/
l Log(price) LTSC l
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3. Seasonal components & short-term forecastin

LTSC and short-term price forecasting cont.

Energy Economics 57 (2016) 228-235

Contents lists available at ScienceDirect Energy
Economics

Energy Economics

journal homepage: www.elsevier.com/locate/eneco

On the importance of the long-term seasonal component in day-ahead @rmwm
electricity price forecasting

Jakub Nowotarski, Rafat Weron*

Department of Operations Research, Wroctaw University of Technology, Wroctaw, Poland

ARTICLE INFO ABSTRACT
Article history: In day-ahead electricity price forecasting (EPF) the daily and weekly seasonalities are always taken into
Received 16 March 2016 account, but the long-term seasonal component (LTSC) is believed to add unnecessary complexity to the

Received in revised form 21 May 2016
Accepted 25 May 2016
Available online 2 June 2016

already parameter-rich models and is generally ignored. Conducting an extensive empirical study involv-
ing state-of-the-art time series models we show that (i) decomposing a series of electricity prices into a
LTSC and a stochastic component, (ii) modeling them independently and (iii) combining their forecasts can
bring - contrary to a common belief - an accuracy gain compared to an approach in which a given time
series model is calibrated to the prices themselves.

JEL dlassification:

Rafat Weron (Wrocta
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Wavelet and HP-filter based LTSCs
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@ Wavelet filters (-S,): S5, Se, - . ., S14, ranging from 'daily’ smoothing
(Ss — 2% hours) up to ‘biannual’ (S14 — 2* hours)

@ HP-filters (-HP,): with A = 10%,5-10%,10°,...,5- 10"
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3. Seasonal components & short-term forecasting Models

For the log-price, i.e., pyn = log(Pg4,s), the model is given by:

Pd.h = BhiPd—1,n + Bn2Pd—2,n + Bn3Pd—7,n + Bh.aPd—1,min

autoregressive effects non-linear effect
3
+ Bhsze + Zi_lﬂh,i—&-SDi +ed,h (1)
N—— —_—

load forecast Mon, Sat, Sun dummies

® pd_1.min IS Yesterday's minimum hourly price
@ z; is the logarithm of system load/consumption

@ Dummy variables Dy, D, and D5 refer to Monday, Saturday and
Sunday, respectively
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The SCAR modeling framework

(Nowotarski & Weron, 2016, ENEECO; Uniejewski, Marcjasz & Weron, 2017, WP)

The Seasonal Component AutoRegressive (SCAR) modeling
framework consists of the following steps:

@ (a) Decompose the log-price in the calibration window into
the LTSC T4 and the stochastic component qq 5
(b) Decompose the exogenous series in the calibration window
using the same type of LTSC as for prices

@ Calibrate the ARX model to g; and compute forecasts for the
24 hours of the next day (24 separate series)
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The SCAR modeling framework cont.

3.6

log(price)
——LTSC
—=—LTSC forecast

35

34 -

3.2

@ Add stochastic component forecasts §441,5 to persistent
forecasts Tg441,, of the LTSC to yield log-price forecasts pyi1 4

@ Convert them into price forecasts of the SCARX model, i.e.,
Pgi1,n = exp (ﬁd+1,h)
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3. Seasonal components & short-term forecasting Probabilistic forecasts

Three methods of constructing Pls

@ Historical simulation (H), which consists of computing sample
quantiles of the empirical distribution of £45's

@ Bootstrapping (B), which first generates pseudo-prices
recursively using sampled normalized residuals, then computes
desired quantiles of the bootstrapped prices

e Takes into account not only historical forecast errors but also
parameter uncertainty

@ Quantile Regression Averaging (Q)

Note: All require that one-day ahead point prediction errors are
available in the calibration window for probabilistic forecasts
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Datasets: GEFCom 2014
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3. Seasonal components & short-term foreca! Probabilistic forecasts

Datasets: Nord Pool

Dec 24, 2015

120 T ‘ T T
. i rati : Initial calibration
Initial calibration period <« | period for historical I = Test period for point & probabilistic forecasts
for point forecasts | & QRA forecasts |
— 90 4
§ | Initial calibration period for |
= | bootstrapped forecasts |
[
a 60 | | 4
o | |
2
o 30 F
|
0 | I | I
Jan 1,2013 Jul 2,2013 Dec 26, 2013 Jun 26, 2014 Dec 31,2014
» | | | ‘
I I I
=65 | | |
Z | | |
= 55 ‘ | I |
i) | |
a
E 45 I \
2
=
Q
O 35

25
Jan 1,2013 Jul 2, 2013 Dec 26, 2013 Jun 26, 2014 Dec 31,2014

Hours [Jan 1, 2013 - Dec 24, 2015]

afat Weron (Wrocta

Probabilistic EPF

Dec 24, 2015

20.11.2017, NBP Workshop 39 /51



Probabilsic forecasts
Combining probabilistic forecasts

o Average probability forecast: F-Ave’ = 127 | F;(x)
= a vertical average of predictive dlstrlbutlons

o Average quantile forecast: Q-Ave’ = Q1(x)
with Q(x) = £ 7, Qi(x) and quantile forecast Q;(x) = F;*(x)
= a horizontal average

e x = H, B or Q denotes the method of constructing Pls

; Averaging probabilities ; Averaging quantiles ; Comparison
0.8 0.8 0.8
y 06 L 06 L 06
a o a
o . o [
0 - SCAHXHFsem 0.4 - SCARXHPSeIU 04
——SCARXS, ——SCARX, ——F-Avel
0.2 0.2 0.2
—_— F-Ave(; — Q-Ave? — Q-Aveg
0 0 0
25 30 35 40 45 50 25 30 35 40 45 50 25 30 35 40 45 50
System price (EUR/MWh) System price (EUR/MWh) System price (EUR/MWh)
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Probabilsic forecasts
Sharpness and the pinball loss

A 1- 2 —P,), for P, < @ ,
Pinball (Qr,(q), P, q) = (1-q) (f?Pt(q) ), for P, Qr.()
q (P = Qr.(9)), for P > Qp,(q),

° @pt(q) is the price forecast at the g-th quantile

@ P, is the actually observed price

@ To provide an aggregate score we average:

e across all hours in the test period
e across different quantiles (all 99 or extreme 20 percentiles)
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3. Seasonal components & short-term forecas Case study

How many models should we average?

2.

2.4

Pinball

Pinball

s GEFCom2014, Pinball across all 99 percentiles

Nord Pool, Pinball across all 99 percentiles
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Diebold-Mariano (DM) tests

Define the ‘multivariate’ loss differential series in the || - ||;-norm as:
Axyv.d = |Txallt = 7y.alla

where

© Txd=(Txd1,---,Tx,d24) is the vector of pinball scores for
model X and day d

o |[mx.dlli = X2, |7x.q.s| is the average across the 24 hours

As in the standard DM test, we assume that the loss differential
series is covariance stationary
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Diebold-Mariano (DM) tests cont.

For each model pair we compute two one-sided DM tests:
Q@ Ho: E(Ax,y4) <0 = X yields better forecasts
Q@ HE : E(Ax.y.q) >0 =Y yields better forecasts

We present results for 14 selected models:
@ Both naive benchmarks — Naive, Naive®
@ All three ARX benchmarks — ARXH ARXE, ARXQ
@ The best ex-post
o SCARXH SCARXB and SCARXQ models
o Q-Ave" Q-AveB and Q-Ave? average quantile forecasts

o F-Ave" F-AveB and F-AveQ average probability forecasts
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Case study
p-values of the DM test across 99 percentiles

GEFCom2014, Pinball across all 99 percentiles

0.1

Naive'
Naive® 0.09
H
ARX 0.08
ARX®
0.07
ARX®
H
SCARXg, 0.06
SCARXE,
b 0.05
SCARXS,
QAve'j8 0.04
-Al B
Q-Ave 0.03
Q
QrAve‘S
FVAve':B 0.02
B
F-Ave 001
Q
F-Ave‘5

Nord Pool, Pinball across all 99 percentiles

Naive'

Naive®
ARXH!
ARX®
ARX®

SCARXY,
SCARXZ,
SCARXZ,
Q-Ave!!
CA-Ave?g
Cl'Ave?9
FrAve';
F-Ave?,

Q
F-Ave s

We use a heat map to indicate the range of the p-values — the closer they are to zero
(— dark green) the more significant is the difference between the forecasts of a model on the
X-axis (better) and the forecasts of a model on the Y-axis (worse)
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3. Seasonal components & short-term forecasti Case study

p-values of the DM test across 20 percentiles

GEFCom2014, Pinball across 20 extreme percentiles Nord Pool, Pinball across 20 extreme percentiles

Naive"
Naive®
ARX"
ARX®
ARX®
SCARXY,,
SCARXE,,
SCARXSPSeE
Cl'Ave:*8
Q-Ave?,
Cerve?2
F-Ave:*B
F-Ave?,

Q
F-Ave s

We use a heat map to indicate the range of the p-values — the closer they are to zero
(— dark green) the more significant is the difference between the forecasts of a model on the
X-axis (better) and the forecasts of a model on the Y-axis (worse)
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Case study
Main findings

@ ‘Probabilistic’ SCARX models (nearly always) significantly
outperform the Naive and ARX benchmarks

o SCARXQ models (nearly always) significantly outperform
SCARXH and SCARX®

@ Both averaging schemes generally significantly outperform the
benchmarks and the non-combined SCARX models

@ Averaging over probabilities (F-Ave*) generally yields better
probabilistic EPFs than averaging over quantiles (Q-Ave})

o In contrast to typically encountered economic forecasting
problems (Lichtendahl et al., 2013)
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4. New trends in energy forecasting

Point — probabilistic — path forecasting

§ 607—0— Price § 60 Paths‘
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Time Time

o Relatively novel in EPF (but not in weather forecasting)

@ Operational decisions often depend on prices for multiple hours
in a row (e.g., ramping costs of power plants)

@ Regulatory incentives: in Germany a wind park can receive less
subsidies if the electricity price is negative for 6 hours in a row
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Intraday forecasting
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A new book on EPF ... forthcoming in 2018

‘ _— CRC Press
Rafat Weron, Florian Ziel Taylor & Francis Group

Forecasting Electricity Prices:
A Guide to Robust Modeling

Chap. 1: The Art of Forecasting
Chap. 2: Markets for Electricity
Chap. 3: Forecasting for Beginners
Chap. 4: Forecasting for Intermediates
Chap. 5: Evaluating Models and Forecasts
Chap. 6: Forecasting for Experts
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