On the importance of the long-term seasonal
component in day-ahead electricity price
forecasting. Part Il - Probabilistic forecasting

Rafat Weron*

Department of Operations Research
Wroctaw University of Science and Technology (PWr), Poland
http://kbo.pwr.edu.pl/en/staff/rafal-weron/

*Based on work with Grzegorz Marcjasz and Bartosz Uniejewski
Rafat Weron (Wroctaw, PL) LTSC in probabilistic EPF 20-21.06.2018, CEMA, Rome 1/31


http://kbo.pwr.edu.pl/en/staff/rafal-weron/

LTSC and short-term price forecasting

@ Can the long-term trend-seasonal component (LTSC) impact
short-term (day-ahead) electricity price forecasts?
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Point forecasting: Yes, it can!
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In day-ahead electricity price forecasting (EPF) the daily and weekly seasonalities are always taken into
account, but the long-term seasonal component (LTSC) is believed to add unnecessary complexity to the
already parameter-rich models and is generally ignored. Conducting an extensive empirical study involv-
ing state-of-the-art time series models we show that (i) decomposing a series of electricity prices into a
LTSC and a stochastic component, (ii) modeling them independently and (iii) combining their forecasts can
bring - contrary to a common belief - an accuracy gain compared to an approach in which a given time
series model is calibrated to the prices themselves.
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What about probabilistic forecasts?
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Agenda

@ The Seasonal Component (SC) approach

o Wavelets and the HP-filter
o SCAR/SCANN models

o
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Decomposition of a signal into an approximation (a smoother)
and a sequence of detail series: A+ D, + D1 + ... + Dy):
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Wavelets
Decomposition of a signal into an approximation (a smoother)
and a sequence of detail series: A+ D, + D1 + ... + Dy):
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Wavelets

Decomposition of a signal into an approximation (a smoother)
and a sequence of detail series: A+ D, + D1 + ... + Dy):
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The Hodrick-Prescott (1980, 1997) filter

A simple alternative to wavelets

@ Originally proposed for decomposing GDP into a long-term
growth component and a cyclical component

@ Returns a smoothed series 7; for a noisy input series y;:

min {i(yt — )2 A g

Tt
t=1

(ress =) = (e = 7)) |,

Punish for:

e deviating from the original series
e roughness of the smoothed series
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Wavelet and HP-filter based LTSCs

6 4.2
4
3.8
8
B g .
& b
50 a
2 4 g,
< 9 9
] —_
5 :
g £ 3
I o
& Z
o 28 Pd.h
: ——HPys
3 06l == HPsam
— — HP5qon
2.5 2.4
1.1.2011 1.4.2011 1.7.2011 1.10.2011  26.12.2011 1.7.2013 1.10.2013 1.1.2014 142014 25.6.2014

@ Wavelet filters (-S,): S5, Se, - . ., S14, ranging from 'daily’ smoothing
(Ss — 2% hours) up to ‘biannual’ (S14 — 2* hours)

@ HP-filters (-HP,): with A = 10%,5-10%,10°,...,5- 10"
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The Seasonal Component (SC) approach SCAR/SCANN models

A multivariate framework
(Ziel & Weron, 2018, ENEECO)
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SCAR/SCANN models
The ARX model

For the log-price, i.e., pyn = log(Pg4,s), the model is given by:

Pd.h = BhiPd—1,n + Bn2Pd—2,n + Bn3Pd—7,n + Bh.aPd—1,min

autoregressive effects non-linear effect

3
+ Bhszan + Z;:l BhitsDi +ean (1)
——— —_—

load forecast Mon, Sat, Sun dummies

® pd_1.min IS Yesterday's minimum hourly price
@ z; is the logarithm of system load/consumption

@ Dummy variables Dy, D, and D5 refer to Monday, Saturday and
Sunday, respectively

Rafat Weron (Wroctaw, PL) LTSC in probabilistic EPF 20-21.06.2018, CEMA, Rome 10 / 31



SCAR/SCANN models
A nonlinear alternative;: The ANN model

Input Hidden Ouput
layer layer layer

Pd,n
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The SCAR/SCANN modeling framework

Nowotarski-Weron, 2016, ENEECO; Marcjasz et al., 2018, IJF; Uniejewski et al., 2018, ENEECO

The Seasonal Component AutoRegressive (SCAR) / Atrtificial Neural
Network (SCANN) framework consists of the following steps:

@ (a) Decompose the (log-)price in the calibration window into
the LTSC T4 and the stochastic component qq 5
(b) Decompose the exogenous series in the calibration window
using the same type of LTSC as for prices

@ Calibrate the ARX or ANN model to g; and compute forecasts
for the 24 hours of the next day (24 separate series)
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The SCAR/SCANN modeling framework cont.
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@ Add stochastic component forecasts §441,5 to persistent
forecasts 7A'd+1,h of the LTSC to yield log-price forecasts pyi1,5

Q@ Convert them into price forecasts of the SCAR or SCANN
model, i.e., Pyi1.n = exp (Pd+1.n)
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Agenda
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© Study design
o Datasets
e Probabilistic forecasts and the pinball score
o
("]
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Study design and results Datasets

GEFCom2014 (2011-2013)

From the Global Energy Forecasting Competition

400

nitial calibration window for point forecasts, ¢

350 | ;

Test period for point forecasts

Yy

) Test period for probabilistic forecasts

Initial calibration
window for
probabilistic
forecasts

300

&}

ol

=]
T

LMP [USD/MWh]
— o
g 8
T T

=
5]
S

ot
S

| |
1.01.2011 26.12.2011 25.06.2012 31.12.2012

16.12.2013

w
S

)
S

tem load [GWHh]

S

2T | | I
1.01.2011 26.12.2011 25.06.2012 31.12.2012
Hours [1.1.2011 - 16.12.2013]

Sy

16.12.2013

Rafat Weron (Wroctaw, PL) LTSC in probabilistic EPF 20-21.06.2018, CEMA, Rome 15 / 31



Nord Pool (2013-2017)
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Study design and results Probabilistic forecasts and the pinball score

Three methods of constructing Pls

@ Historical simulation (H), which consists of computing sample
quantiles of the empirical distribution of £45's

@ Bootstrapping (B), which first generates pseudo-prices
recursively using sampled normalized residuals, then computes
desired quantiles of the bootstrapped prices

e Takes into account not only historical forecast errors but also
parameter uncertainty

@ Quantile Regression Averaging (Q)

Note: All require that one-day ahead point prediction errors are
available in the calibration window for probabilistic forecasts
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Study design and results Probabilistic forecasts and the pinball score

Quantile Regression Averaging (QRA): The idea

(Nowotarski & Weron, 2015, COST)

Quantile regression:

\
mm[z 1y.<x.8, (Yc X:Bq)

e X, = [1'Y1,tr - ym.t]

ﬂq - vector of parameters Com bined interval
/ forecast (e.g. for
g=0.05 & 0.95)
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Probabilistic forecasts and the pinball score
Combining probabilistic forecasts

o Average probability forecast: F-Ave’ = 127 | F;(x)
= a vertical average of predictive dlstrlbutlons

o Average quantile forecast: Q-Ave’ = Q1(x)
with Q(x) = £ 7, Qi(x) and quantile forecast Q;(x) = F;*(x)
= a horizontal average

e x = H, B or Q denotes the method of constructing Pls

; Averaging probabilities ; Averaging quantiles ; Comparison
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Probabilistic forecasts and the pinball score
Sharpness and the pinball loss

. A [ —=9)(Qn(a)—P.), for P < Qr(a).
Pinball (Qr.(q), Pr, q) = a (P~ 00na)). for P, > O (a).

o Qp,(q) is the price forecast at the g-th quantile

@ P, is the actually observed price

1.4

@ To provide an aggregate score 12
we average: 0;

e across all hours in the test period 06

e across 99 percentiles 04

0.2

-2
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Probabilistic forecasts and the pinball score
Diebold-Mariano (DM) tests

Define the ‘multivariate’ loss differential series in the || - ||;-norm as:
Axyd = |[7x.all1 — |l7y.alls
where
® Txd=(Txd1,---:Tx.d24) is the vector of pinball scores for

model X and day d

o |[mx.dlli = 7%, |7x.da.s| is the average across the 24 hours

@ As in the standard DM test, we assume that the loss differential
series is covariance stationary

For each model pair we compute two one-sided DM tests:
Q@ Ho: E(Ax y.q) < 0= Xyields better forecasts
Q@ HE : E(Ax.y.q) >0 =Y yields better forecasts
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@ Results

e Combining SCAR models across LTSCs
o Combining SCANN models across runs
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Combining SCAR models across LTSCs
Combining SCAR models across LTSCs

(Uniejewski et al., 2018, ENEECO)

We present results for 14 selected ARX-type models:
@ Both naive benchmarks — Naive", Naive®
@ All three ARX benchmarks — ARXH, ARXE, ARX®
@ The best ex-post
o SCARXH SCARXB and SCARXQ models
° Q-Ave#, Q—Aveg and Q-Ave(,? average quantile forecasts

o F-Ave" F-AveB and F-AveQ average probability forecasts
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Combining SCAR models across LTSCs
p-values of the DM test across 99 percentiles

GEFCom2014, Pinball across all 99 percentiles
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Nord Pool, Pinball across all 99 percentiles
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F-Ave?,

Q
F-Ave s

We use a heat map to indicate the range of the p-values — the closer they are to zero
(— dark green) the more significant is the difference between the forecasts of a model on the
X-axis (better) and the forecasts of a model on the Y-axis (worse)
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Combining SCAR model across LTSCs
Main findings

@ ‘Probabilistic’ SCARX models (nearly always) significantly
outperform the Naive and ARX benchmarks

o SCARXQ models (nearly always) significantly outperform
SCARXH and SCARX®

@ Both averaging schemes generally significantly outperform the
benchmarks and the non-combined SCARX models

@ Averaging over probabilities (F-Ave*) generally yields better
probabilistic EPFs than averaging over quantiles (Q-Ave})

o In contrast to typically encountered economic forecasting
problems (Lichtendahl et al., 2013, Mgnt Sci.)
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Combining SCANN models across runs
The SCANN modeling framework

(Marcjasz et al., 2018, IJF; Marcjasz et al., 2018, WP)

x(t) Hidden

Output

I y(t+1)
1

@ One hidden layer with 5 neurons and sigmoid activation functions
o NARX inputs identical as in the ARX model

@ Trained using Matlab’s trainlm function, utilizing the
Levenberg-Marquardt algorithm for supervised learning
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Sample gains from using committee machines

S GEFCom: ANN, CﬁEFCom; SCANN,,-HP, 0 NP: ANN,, NP: SCANN,,-S;,
5‘3 .
o —e— (SC)ANN,,
= — — (SC)ARX 95
€3]
<
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2
& 8.5
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3
é 10
12345678910 12345678910 12345

7.
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n n n n

@ Forecast errors roughly scale as a power-law function of the
number of networks (runs) in a committee machine

@ We should use as large committee machines as we can ...

@ ... or use a more efficient training algorithm — FANN library,
see Marcjasz, Uniejewski & Weron (2018, WP)
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Combine point or probabilistic forecasts?
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p-values of the DM test across 99 percentiles
(Marcjasz, Uniejewski & Weron, 2018, WP)

GEFCom2014, Pinball across 99 percentiles
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Nord Pool, Pinball across 99 percentiles
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Combining SCANN models scross runs
Main findings

@ Point forecasts
o (SC)ANN models outperform (SC)ARX for every LTSC

@ Probabilistic forecasts

o The QRA and QRM models are much better than Hist
o QRA(2) is the best performer, but much slower than QRM(N)
o It is always beneficial to average forecasts (vertical is better)

@ Times needed to produce one week of hourly forecasts:
QRM(N) | QRA(2) | QRA(3) | QRA(4) | QRA(5)
25s | 68s | 1115s | 1715s | 248s
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Wrap up

@ Point forecasts

o (SC)ANN models outperform (SC)ARX ... if properly designed
@ Probabilistic forecasts

o (SC)ANN models offer opportunities that (SC)ARX do not

@ However:

2a/ The Combination of approaches was the king of the M4. Out of the 17 most
accurate methods, 12 were Combinations of mostly statistical ones.

M&
~" -j Spyros Makridakis @spyrosmakrid - 8 cze

o », Spyros Makridakis @spyrosmakrid - 8 cze v

‘&j 5/ The five Machine Learning (ML) methods submitted in the M4 performed
poorly, none of them being more accurate than the statistical benchmark and
only one being more accurate than Naive 2, finding consistent with our PLOS
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