Stealing accuracy:
Predicting day-ahead electricity prices with
Temporal Hierarchy Forecasting (THieF)
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What are we trying to predict?
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Why do we need electricity price forecasts?
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* Buy and charge the battery
when the price is low
» Discharge the battery and sell

when the price is high



How do we generate forecasts?
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Day-ahead markets for electricity
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Forecasts of prices for the next day
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Trading: Block contracts
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Temporal hierarchies

one 24-hour block (daily average)

24 hourly blocks




Temporal hierarchies
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Temporal hierarchies
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Temporal hierarchies

A

Top down




Temporal hierarchies
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Forecast reconciliation
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Step I: Compute base forecasts

Estimate base models for block h of day d
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Base forecasts

A min _maxr T 1 1 7
Pan = F(Pa1hs s Pa—tn, PP DP9 Lan, Wan, APT; o, TTF, 5, DV, ..., D)
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NARX (Non-linear ARX model)

* 5 neurons in the hidden layer

* Hyperbolic tangent activation functions

» Early stopping with 10% validation set

» Weights estimated with Levenberg-
Marquadt in Matlab

* Final forecast is an average of 10

independently trained networks



XGB (eXtreme Gradient Boosting)

» Python XGBoost package

* Mean squared error loss function

» Optuna-based hyperparameter optimization

* 10 Independent runs once a year, separately for

each hour/block

» Final forecast is an average of 10 XGB decision

trees with different hyperparameters



Mitra

» 12-layer transformer with 72 million parameters
* Pretrained on synthetic data

» Zero-shot forecasting with in-context learning
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Step I: Compute base forecasts

Estimate base models for block h of day d
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Minimum trace (MinT) reconciliation
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Step ll: Compute in-sample errors

Having estimated base models for block h of day d
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Step lll: Compute weights through MinT

Error covariance Estimated weights
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e Results

Germany (EPEX-DE) Spain (OMIE)
Level Model MAE MAE; Yo RMSE RMSE; Y% MAE MAE; 7 RMSE RMSE; Yo
ARX 26.93 26.17 2.8 39.83 38.75 2.1 16.72 6.57 0.9 24.40 24.38 0.1
NARX  23.06 22.29 3.3 35.62 34.63 2.8 16.57 6.24 2.0 24.07 23.92 0.6

XGB 18.80 16.59 11.7 29.50 25.54 154 13.25
Mitra 16.56 15.22 8.1 24.81 22.70 8.5 1291

2.58 5.1 19.61 18.66 4.8
2.42 3.8 18.84 18.11 3.8

I
1H 1
XGB 23.33 22.30 4.4 37.05 35.02 3.5 16.54 15.98 3.4 24.57 23.67 3.7
Mitra 21.37 21.11 1.2 33.31 32.91 1.2 15.92 15.84 0.6 23.61 23.20 1.7
ARX 26.44 25.68 2.9 38.95 37.86 2.8 16.41 16.25 1.0 23.96 23.92 0.2
oY NARX  22.64 21.61 4.5 34.84 33.44 4.0 16.29 15.80 3.0 23.71 23.29 1.8
- XGB 22.74 21.66 4.8 35.87 33.88 5.6 16.19 15.56 3.9 24.11 23.09 4.2
Mitra 20.92 20.38 2.6 32.43 31.60 2.6 15.56 15.38 1.1 23.17 22.54 2.7
ARX 25.65 24.85 3.1 37.50 36.33 3.1 15.88 15.71 1.1 23.25 23.17 0.4
AH NARX  21.75 20.66 5.0 33.27 31.75 4.6 15.68 15.27 2.6 22.96 22.48 2.1
XGB 22.01 20.72 5.8 34.24 32.19 6.0 15.78 14.95 5.3 23.60 22.26 5.7
Mitra 20.13 19.39 3.7 30.86 29.79 3.5 15.01 14.79 1.4 22.19 21.70 2.2
ARX 24.37 23.65 2.9 35.59 34.35 3.5 15.14 14.99 1.0 22.12 21.99 0.6
QH NARX  20.54 19.42 5.4 31.20 29.71 4.8 15.01 14.52 3.2 21.92 21.35 2.6
XGB 21.06 19.63 6.8 32.94 30.24 8.2 15.10 14.18 6.1 22.50 21.08 6.3
Mitra 19.45 18.22 6.3 29.34 27.74 5.5 14.44 14.01 3.0 21.45 20.47 4.5
ARX 20.92 20.50 2.0 30.28 29.27 3.4 13.57 13.40 1.2 19.50 19.39 0.6
4l NARX  17.99 16.53 8.2 27.24 25.08 7.9 13.29 }2.94 2.6 19.14 18.98 0.9
I



Results
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Quantitative Finance > Statistical Finance
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