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Introduction Energy forecasting literature

Energy (load, price, wind & solar) forecasting*
(Hong, Pinson, Wang, Weron, Yang & Zareipour, 2020, IEEE OAJPE)

* Number of Scopus indexed publications (2.2025 update)

Rafał Weron (Wrocław Tech, PL) IIF Lecture: Electricity Price Forecasting, part I UNC Charlotte, ISEA2025, 3-4.03.2025 2 / 63
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Introduction Energy forecasting literature

Percentage of energy forecasting publications*
(Hong, Pinson, Wang, Weron, Yang & Zareipour, 2020, IEEE OAJPE)

* Top 10 journals in each area (2010-2024);
some are ranked top 10 across multiple areas

** Numbers of forecasting/total publications for
each journal are shown in parentheses
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Introduction Power markets across the globe

Competitive power market structures across the globe

Data source: Akcura (2024)
Global Power Market Structures Database
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Introduction Power markets across the globe

Power pool vs. power exchange
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Introduction Power markets across the globe

National vs. zonal vs. nodal pricing

Adapted from: National Grid ESO (2022) Net Zero Market Reform
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https://www.nationalgrideso.com/document/258871/download


Introduction Power markets across the globe

North American landscape

Independent System Operators (ISO)

Reliable & effective grid operation

Scheduling of power generation

Stability of supply (transmission)

ERCOT (Texas) is a Regional
Transmission Organization (RTO)

Does not cross state lines

Nodal pricing Day-ahead (DA) and real-time (RT; ~5% of volume) markets
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https://www.time2market.net/blog/a-comparison-of-european-and-american-power-markets
https://www.time2market.net/blog/a-comparison-of-european-and-american-power-markets


Introduction Power markets across the globe

European landscape

Transmission System Operators (TSO)

Operate the transmission system

Ensure the grid is balanced

Exception: Germany has 4 TSOs

Market coupling

Price Coupling of Regions –
EUPHEMIA (DA)

Flow-Based Market Coupling (DA)

XBID mechanism (ID)

Zonal pricing Day-ahead (DA) and intraday (ID; 3-20% of volume) markets
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Introduction Power markets across the globe

Market coupling → (more) similar prices in bidding zones
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Introduction Power markets across the globe

Timeline of DA and ID trading activities in Europe
(Maciejowska, Uniejewski & Weron, 2023, Oxford Res. Enc.)
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Introduction Power markets across the globe

Day-ahead (> 90% of papers) vs. intraday (real-time) markets
(Maciejowska, Uniejewski & Weron, 2023, Oxford Res. Enc.)
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Introduction Model taxonomy

Model taxonomy: 2014 vs. 2022
Weron (2014, IJF) → Weron & Ziel (2022, DFG-NCN project PRIORITY)
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Electricity price forecasting (EPF) 
and modeling approaches

Multi-agent Fundamental Reduced-form Statistical
Computational 

intelligence

Feed-forward 
neural 

networks

Recurrent
neural 

networks

Fuzzy neural 
networks

Support 
vector 

machines

GARCH-type

Similar-day,  
exponential 
smoothing

Regression 
models

AR, ARX-type

Threshold AR

Jump-
diffusions

Markov 
regime-

switching

Parameter 
rich 

fundamental

Parsimonious 
structural

Nash-
Cournot

framework

Supply 
function 

equilibrium

Strategic 
production-

cost

Agent-based

Rafał Weron (Wrocław Tech, PL) IIF Lecture: Electricity Price Forecasting, part I UNC Charlotte, ISEA2025, 3-4.03.2025 12 / 63

http://dx.doi.org/10.1016/j.ijforecast.2014.08.008
https://kbo.pwr.edu.pl/en/research/research-projects/dfg-ncn-2021-43-i-hs4-02578-2/
http://dx.doi.org/10.1016/j.ijforecast.2014.08.008
https://kbo.pwr.edu.pl/en/research/research-projects/dfg-ncn-2021-43-i-hs4-02578-2/


Introduction Model taxonomy

Day-ahead point forecasting: Univariate ...
(Ziel & Weron, 2018, ENEECO)
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Introduction Model taxonomy

... multivariate ...
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Introduction Model taxonomy

... functional (data analysis) ...
(Chen & Li, 2017, JBES; Chen et al., 2019, Ann.Appl.Stat; Wang & Cao, 2023, Environmetrics)
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Introduction Model taxonomy

... or supply & demand curves?
(Ziel & Steinert, 2016, ENEECO → ‘X-model’; Shah & Lisi, 2020, J.Forecasting)
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http://dx.doi.org/10.1016/j.eneco.2016.08.008
https://doi.org/10.1002/for.2624


‘Toy’ models

1 Introduction

2 ‘Toy’ models
The forecasting setup
Naive models
(Auto)regressive models
Nonlinear AR models
Exponential smoothing models �
Supply stack models

3 Beyond point forecasts

4 Forecast accuracy
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http://dx.doi.org/10.1016/j.ijforecast.2014.08.008
http://dx.doi.org/10.1016/j.rser.2017.05.234
https://doi.org/10.1016/j.apenergy.2021.116983


‘Toy’ models The forecasting setup

Forecasting setup: Fixed, expanding & rolling windows

Fixed calibration window Test window

Expanding calibration window (recursive scheme) Test window

Rolling (long) calibration window Test window

Rolling (short) Test window
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‘Toy’ models The forecasting setup

‘Toy’ models for point forecasts
Let us fix the notation:

Pt = P24d+h = Pd ,h is the price for day d and hour h
P̂t = P̂d ,h|d−1 is the forecast of Pd ,h computed on day d − 1 (in the morning)

where t = 1, ...,T , d = 1, ..., T24 and h = 1, ..., 24

The prediction error or residual is given by: εt = Pt − P̂t

Consider five classes of ‘toy’ models:
1 Naive
2 (Auto)Regressive
3 Nonlinear AR
4 Exponential smoothing
5 Supply stack
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‘Toy’ models Naive models

Naive models
(Nogales et al., 2002, TPWRS; Weron, 2014, IJF; Lago et al., 2021, APEN)

Naive (persistent, white noise) forecast:

P̂naived ,h =

Pd−1,h for d = Tue, Wed, Thu, Fri

Pd−7,h for d = Mon, Sat, Sun

Simpler alternatives: P̂ (1)
d ,h = Pd−1,h and P̂

(7)
d ,h = Pd−7,h

P̂
(7)
d ,h is easier to compute than P̂

naive
d ,h and, unlike P̂

(1)
d ,h, captures weekly effects
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‘Toy’ models (Auto)regressive models

Multiple regression

yt = β0 + β1x1,t + β2x2,t + · · ·+ βkxk,t + εt

The predictors can be:
different variables, e.g., x1,t – load, x2,t – RES generation
lagged values of the same variable, e.g., x1,t = yt−1, x2,t = yt−2 → autoregression
or a combination of both

Coefficients β1, . . . , βk measure the marginal effects
after taking account of the effect of all other predictors

The forecast ŷt of yt is obtained by setting εt = 0
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‘Toy’ models (Auto)regressive models

(Ordinary) Least Squares (OLS) estimation

The OLS chooses βi ’s that minimize the sum of squared errors (SSE):

β̂ = argmin
βi

T∑
t=1

ε2t = argmin
βi

T∑
t=1

(yt − (β0 + β1x1,t + β2x2,t + . . .+ βkxk,t)︸ ︷︷ ︸
ŷt

)2

The estimated coefficients are denoted by β̂ = [β̂0, . . . , β̂k ]

The process of finding β̂i ’s is called:
estimating model parameters
fitting the model to the data
learning (training) the model
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‘Toy’ models (Auto)regressive models

Regression in matrix form

The multiple regression model for t = 1, ...,T

yt = β0 + β1x1,t + β2x2,t + · · ·+ βkxk,t + εt

Can be written in matrix form with OLS solution:

y = Xβ + ε =⇒ β̂ = (X ′X )−1X ′y

where y = (y1, . . . , yT )
′, ε = (ε1, . . . , εT )

′, β = (β0, . . . , βk)
′ and

X =


1 x1,1 x2,1 . . . xk,1
1 x1,2 x2,2 . . . xk,2
...
...

...
...

1 x1,T x2,T . . . xk,T


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‘Toy’ models (Auto)regressive models

Expert ARX-type models

Consider an autoregressive structure with exogenous variables:

Pd ,h = β0 +
∑7

i=1
βiPd−i ,h︸ ︷︷ ︸

AutoRegressive effects

+
∑7

i=1
βi+7Di︸ ︷︷ ︸

D1 = Mon, ...

+
∑K

i=1
βi+14X

(i)
d ,h︸ ︷︷ ︸

eXogenous variables

+ εd ,h

There can be no more dummies than categories → set β0 = 0 if all Di ’s are used
Also set β0 = 0 if the mean is removed from Pd ,h beforehand

Special cases:

Naive model P(1)
d ,h for β1 = 1 and βi ̸=1 = 0

AR(7), sparse AR(7) with some AR lags missing
ARX(7) with K ­ 1, sparse ARX(7) with some AR lags missing
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‘Toy’ models Nonlinear AR models

Linear regression vs. single-output (shallow) neural network
(Jȩdrzejewski, Lago, Marcjasz & Weron, 2022, IEEE-PEM)
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‘Toy’ models Nonlinear AR models

What are the differences?

Computational complexity
Linearity ⇔ non-linearity (hidden layers)

Optimization
OLS ⇔ back-propagation, Levenberg-Marquardt algorithm, ...

Execution time (in MATLAB)
Fast ⇔ slow ... ca. 400× slower for one run!
0.061 vs. 24.57 sec. for 7 days on a laptop with i7-1065G7

Stability
Always the same parameters/forecasts ⇔ different for each run,
dependent on starting parameters
Solution: committee machines → ensemble averaging
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‘Toy’ models Nonlinear AR models

Number of hidden neurons vs. forecast accuracy
(Marcjasz, Uniejewski & Weron, 2019, IJF)

The higher are the price fluctuations (→ larger errors) the more neurons are needed
... but the dependence is not constant over time (seasonality)
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‘Toy’ models Nonlinear AR models

Number of runs (ensemble size) vs. forecast accuracy
(Marcjasz, Uniejewski & Weron, 2019, IJF)

The more runs (→ longer computational time) the better
The prediction error decays as a power law
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‘Toy’ models Exponential smoothing models �

Additive Holt-Winters method: Component form

Forecast eq.: ŷt+h|t = ℓt + hbt + st+h−m(k+1)

Smoothing
equations:


ℓt = α(yt − st−m) + (1− α)(ℓt−1 + bt−1) Level

bt = β(ℓt − ℓt−1) + (1− β)bt−1 Trend

st = γ(yt − ℓt) + (1− γ)st−m Seasonality

where
h is the forecast horizon (steps ahead), m is the period
k is the integer part of h−1

m
⇒ estimates come from the final period of the sample

0 ¬ α, β, γ ¬ 1 are estimated numerically by minimizing the sum of squared errors:
T∑
t=1

ε2t =
T∑
t=1

(yt − ŷt)
2
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‘Toy’ models Exponential smoothing models �

The family of exponential smoothing methods
(Hyndman & Athanasopoulos, 2021, OTexts; Hyndman, Koehler, Ord & Snyder, 2008, Springer)
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‘Toy’ models Exponential smoothing models �

Python snippet: ToyModels.ipynb
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‘Toy’ models Supply stack models

Supply stack model
(Weron & Ziel, 20∗∗)

Fundamental approach from the subclass of parsimonious structural models

Assumptions:

Island grid, i.e., no imports or exports

The power plant park is composed of J units
Every unit j = 1, . . . , J is characterized by its
installed capacity ACj (in MW)
marginal cost MCj (e.g., in EUR, USD) of
producing an additional MWh by generator j
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‘Toy’ models Supply stack models

Supply stack model cont.
(Weron & Ziel, 20∗∗)

Consider a park composed of J = 15 units
Roughly corresponds to Germany in 2018
10 different types of generators

The merit order curve is given by

MO(x) = MCj(x)

where x is the volume in MW and
j(x) = maxj{CCj ¬ x} is the marginal unit
CCj =

∑j
i=1 ACi is the cumulative capacity

j ACj MCj Type CCj
1 8,000 0 CHP 8,000
2 6,000 0 Biomass 14,000
3 3,000 0 Hydro 17,000
4 8,000 0 Wind 25,000
5 4,000 0 Solar 29,000
6 10,000 10 Nuclear 39,000
7 11,000 20 Lignite 50,000
8 6,000 25 Lignite 56,000
9 9,000 30 Coal 65,000
10 6,000 35 Coal 71,000
11 7,000 45 NG 78,000
12 6,000 55 NG 84,000
13 4,000 65 NG 88,000
14 3,000 80 Oil 91,000
15 3,000 95 Oil 94,000
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‘Toy’ models Supply stack models

Supply stack model: Price setting
Net demand of 53,000 MW yields a spot price of 25 EUR/MWh
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‘Toy’ models Supply stack models

Point forecasts of 3 simple models: Germany, Sun 30.07.2017
Naive P̂naived,h , sparse AR(7; lags = 1,2,7, dummies = Mon, Sat, Sun), and the supply stack model
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Beyond point forecasts

1 Introduction

2 ‘Toy’ models

3 Beyond point forecasts
Probabilistic forecasts
Reliability & sharpness
Postprocessing point forecasts
Historical simulation
Conformal prediction �

4 Forecast accuracy
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Beyond point forecasts Probabilistic forecasts

Probabilistic (interval, density) forecasting
(Gneiting & Katzfuss, 2014, Annu Rev)

We cannot observe the true underlying distribution ⇒ we cannot compare the predictive
distribution F̂ with the actual one F ... only with past observations

Gneiting et al. (2007a, 2007b, 2014) argue
that probabilistic forecasting aims to
‘maximize the sharpness of the predictive
distributions, subject to reliability’

t0

t1

t2

t3

t4

t5

P0
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Beyond point forecasts Reliability & sharpness

Reliability (calibration, unbiasedness)
Refers to the statistical consistency between F̂ and the observations
If a 90% PI covers 90% of the observed prices, then this PI is said to be:
reliable (Pinson et al., 2007; Pinson & Kariniotakis, 2010)
well calibrated (Gneiting et al., 2007a, 2007b, 2014)
unbiased (Taylor, 1999)

Example: 13 ◦ or ‘misses’ and 155 ◦ or ‘hits’ → the coverage is 155168 ≈ 92%
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Beyond point forecasts Reliability & sharpness

Sharpness
(Pinson et al., 2007, Wind En; Gneiting & Raftery, 2007, JASA; Gneiting & Katzfuss, 2014, Annu Rev)

Refers to the concentration or tightness of the predictive distributions
Derives from the idea that reliable predictive distributions of null width correspond
to perfect point predictions
Reliability is a joint property of the predictions and the observations
Sharpness is a property of the forecasts only

Sharper forecast

Less sharp forecast
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Beyond point forecasts Postprocessing point forecasts

Postprocessing point forecasts
(Vannitsem et al., 2018, Elsevier; Chen et al., 2024, Ann Appl Stat; Lipiecki et al., 2024, ENEECO)

Experiment yourself:
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Beyond point forecasts Postprocessing point forecasts

The ‘normal’ benchmark

Assume that the prediction errors are N(µ, σ2)-distributed
Training corresponds to estimating µ̂ and σ̂ of εt = yt − ŷt for t ∈ S
S is the training set (or calibration window)

The τ -th quantile conditional on ŷt is obtained via:

q̂τ |ŷt = ŷt + µ̂+ σ̂F
−1
N (τ)

where F−1N (τ) is the inverse of the standard normal CDF, i.e., with µ = 0, σ = 1
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Beyond point forecasts Historical simulation

Historical simulation
(Hendricks, 1996, EPR; Alexander, 2008, Wiley; Nowotarski & Weron, 2018, RSER)

A model-independent approach that computes

q̂τ |ŷt = ŷt + Qτ (εt)

where Qτ (εt) is the sample τ -quantile of
εt = yt − ŷt for t ∈ S
The term historical simulation (HS) can be
traced back to the early 1990s and the
beginnings of Value-at-Risk (VaR)

Similar to bootstrapped residuals (see, e.g.,
Hyndman & Athanasopoulos, 2021, FPP3),
but each εt is sampled exactly once
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Beyond point forecasts Conformal prediction �

Conformal prediction
(Vovk et al., 2005, Springer; Kath & Ziel, 2021, IJF; Lipiecki et al., 2024, ENEECO)

For t ∈ S calculate the so-called non-conformity scores
λt = |εt | = |yt − ŷt |, then compute

q̂τ |hatyt = ŷt − 1τ¬0.5Q2τ (λ) + 1τ­0.5Q2(1−τ)(λ)

where Qτ (λ) is the τ -th sample quantile of λt
This version is called inductive or split CP, however,
a ‘split’ is not needed if ŷt ’s are already available

HS works with εt ’s, CP with |εt |’s → symmetric F̂
Using ε1, . . . , εT , HS approximates the whole
distribution, CP only the positive half → smoother F̂

"t < 0 "t > 0

"t 2 R
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Beyond point forecasts Conformal prediction �

Python snippet: UncertaintyQuantification.ipynb
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Forecast accuracy

1 Introduction

2 ‘Toy’ models

3 Beyond point forecasts

4 Forecast accuracy
Absolute and square errors
Percentage errors
Scaled and relative errors
Testing for coverage
CRPS and the pinball score
DM-type tests �
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Forecast accuracy Absolute and square errors

Measures of (point) forecast accuracy
(Hyndman & Koehler, 2006, IJF; Weron, 2014, IJF; Kolassa, 2020, IJF; Lago et al., 2021, APEN)

Mean Absolute Error
MAE = 1

T

∑T

t=1
|εt |

(Root) Mean Square(d) Error

MSE = 1
T

∑T

t=1
ε2t and RMSE =

√
1
T

∑T

t=1
ε2t

where |εt | = |Pt − P̂t | is the absolute and ε2t = (Pt − P̂t)
2 is the square(d) error

Note: MSE is minimized by the mean, but MAE by the median
⇒ when using OLS measure forecast accuracy with MSE, not MAE
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Forecast accuracy Percentage errors

Percentage errors: MAPE and DMAE
Mean Absolute Percentage Error

MAPE = 1
T

∑T

t=1

|εt |
Pt

where |εt |
Pt
is the absolute percentage error can be used to compare across datasets

MAPE works well when Pt ≫ 0, e.g., in load forecasting
Is unreliable for electricity prices or temperatures (can be ¬ 0)

Instead of dividing by Pt we can divide by the daily mean P24 = 1
24

∑24
t=1 Pt to

obtain the Daily-weighted MAE for day d :

DMAEd = 1
24
1

P24

∑24

t=1
|εt | = 1

24
1

P24

∑24

h=1
|εd ,h|
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Forecast accuracy Percentage errors

Percentage errors: Symmetric MAPE (sMAPE)
See also https://robjhyndman.com/hyndsight/smape

MAPE puts a heavier penalty on negative than on positive εt
Makridakis (1993) proposed the ‘symmetric MAPE’:

sMAPEM = 200
T

∑T

t=1
|εt |
|Pt+P̂t |

= 200
T

∑T

t=1
|Pt−P̂t |
|Pt+P̂t |

Armstrong’s (1985) version had no | · | in the denominator
Both have a problem when |Pt + P̂t | ≈ 0

Chen & Yang (2004) defined it as (also dropped the ‘100’):

sMAPECY = 2
T

∑T

t=1
|εt |

|Pt |+|P̂t |
= 2

T

∑T

t=1
|Pt−P̂t |
|Pt |+|P̂t |

Still, it is undefined when Pt = P̂t = 0
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Forecast accuracy Scaled and relative errors

Scaled errors
(Hyndman & Koehler, 2006, IJF)

The Mean Absolute Scaled Error is defined by:

MASE = 1
T

∑T

t=τ+1
|εt |
em

= 1
T ·em

∑T

t=τ+1
|εt |

where
em = 1

τ−m
∑τ

t=m+1 |Pt − Pt−m| is the MAE of a naive prediction on the training set

m is the period for seasonal data (e.g., m = 4 for quarterly)

Interpretation: if MASE < 1 then our prediction is better than naive
(on the training set), if MASE > 1 then it is worse
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Forecast accuracy Scaled and relative errors

Relative errors
(Hyndman & Koehler, 2006, IJF; Lago et al., 2021, APEN)

MASE is problematic when:
forecasting methods use different calibration windows / training sets
Pt exhibits ‘long’ periods of higher/lower values

Lago et al. (2021, APEN) argue the a better metric is the relative MAE:

rMAE = relMAE =
MAEmethod

MAEbenchmark

The benchmark can be a naive model (as in MASE)

Can easily be applied to other metrics, e.g., the RMSE

Interpretation: if rMAE, rRMSE < 1 then our prediction is better than the
benchmark, if rMAE, rRMSE > 1 then it is worse
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Forecast accuracy Testing for coverage

Unconditional coverage (UC)

(Empirical) coverage is measured by

It =

1 if Pt ∈ PI→ ◦ ‘hit’
0 if Pt ̸∈ PI→ ◦ ‘miss’

and should match the nominal rate

P(Pt ∈ PI) = P(It = 1) = (1− α)

Some studies report only the so-called
PI Coverage Probability

PICP =
1
T

T∑
t=1

It · 100%

Other subtract it from the nominal
coverage to obtain the so-called
Average Coverage Error

ACE = PICP− PINC

where PINC – PI Nominal Coverage
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Forecast accuracy Testing for coverage

UC and the Kupiec test
(Kupiec, 1995, J Derivatives)

Checks whether ACE = 0 or P(It = 1) = (1− α), given that ◦ are independent
Equivalent to testing that It is i.i.d. Bernoulli with mean (1− α)
Rejects the null (‘good PI’) if the percent of misses is statistically different from α

The likelihood ratio statistics for unconditional coverage:

LRUC = −2 log
{
(1− c)n0cn1

(1− π)n0πn1

}
∼ χ2(1)

c = (1− α) is the nominal coverage rate
π = n1

n0+n1
is the percentage of ◦ ‘hits’

n0 and n1 are respectively the number of 0’s and 1’s in It
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Forecast accuracy Testing for coverage

Independence, conditional coverage and the Christoffersen test
(Christoffersen, 1998, IER)

In the Kupiec (1995) test the clustering of ◦ ‘misses’ does not matter,
only the total number of violations plays a role

Christoffersen (1998) introduced the Independence and Conditional Coverage tests
Ind is tested against an explicit first-order Markov alternative
Like LRUC , also LRInd ∼ χ2(1)

CC is simply a joint test for Ind and UC
If we condition on the first observation, then

LRCC = LRUC + LRInd ∼ χ2(2)
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Forecast accuracy CRPS and the pinball score

Continuous Ranked Probability Score (CRPS)
(Gneiting & Raftery, 2007, JASA; Gneiting & Katzfuss, 2014, Annu Rev; Nitka & Weron, 2023, ORD)

The CRPS is the standard metric for evaluating probabilistic forecasts:

CRPS(F̂ , x) =
∫ ∞
−∞

(
F̂ (y)− 1{x¬y}

)2
dy

where F̂ is the predictive distribution and x is the observation, e.g., electricity price

It is a proper scoring rule, i.e., quoting the true distribution as the forecast is an
optimal strategy in expectation

Problem: in practice we often work with a finite set of quantile forecasts
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Forecast accuracy CRPS and the pinball score

CRPS and the pinball score
(Gneiting & Raftery, 2007, JASA; Nowotarski & Weron, 2018, RSER; Nitka & Weron, 2023, ORD)

The CRPS can be approximated by:

CRPS(F̂ , x) ≈ 2
M

∑M

i=1
PS (q̂, x , qi)

where
q1 < . . . < qM is an equidistant dense grid of probabilities, e.g., 99 percentiles

q̂ ≡ F̂−1(q) is the quantile forecast for quantile level q ∈ (0, 1)

and the pinball score is defined as:

PS(q̂, x , q) =
(
1{x<q̂} − q

)
(q̂ − x)

Note: The scaling factor of 2 is usually omitted in practice
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Forecast accuracy CRPS and the pinball score

Pinball score (or loss) in more detail

PS (q̂, x , q) =
(
1{x<q̂} − q

)
(q̂ − x) =

(1− q) (q̂ − x) for x < q̂

q (x − q̂) for x ­ q̂

Also known as the quantile score, check function
or the linlin/bilinear/newsboy loss

For an Aggregate PS (or APS) average:
across all t in the test period
across all quantiles → CRPS

-2 -1 0 1 2
0

0.5

1

1.5
q=50%

q=25%

q=5%
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Forecast accuracy DM-type tests �

Testing for equal predictive performance
(Diebold & Mariano, 1995, JBES; Diebold, 2015, JBES)

When faced with forecasts from two (or more) models we can rank them based on
some score function (the lower the better):

Ŝ = 1
T

∑T

t=1
S(F̂ , x)

But if we want to know whether the forecasts of model 1 are significantly better
(more accurate) than those of model 2, then we need to use a test

The most popular is the DM test for unconditional predictive ability
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Forecast accuracy DM-type tests �

Testing for equal predictive performance cont.

The test of Giacomini & White (2006, Econometrica) accounts for parameter
estimation uncertainty and tests conditional predictive ability (CPA)

DM and GW tests can be used for nested and non-nested models if the calibration
window does not grow with sample size (Giacomini & Rossi, 2013)

This:

rules out expanding windows

admits fixed and rolling windows
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Forecast accuracy DM-type tests �

Testing for equal predictive performance cont.

Model confidence set of Hansen et al. (2011, Econometrica) is similar to DM
But uses bootstrap to approximate the distribution of the test statistics

Forecast encompassing of Harvey et al. (1998, JBES)
The null says that the forecasts of model 1 do not include more information than
those of model 2
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Forecast accuracy DM-type tests �

Diebold-Mariano (DM) test
It is an asymptotic z-test with null that the mean of the loss differential series:

dt = S1(F̂ ,Pt)− S2(F̂ ,Pt)

is zero, where Si(·, ·) is the score function for model i , e.g., |εt |, ε2t , Pinball score

How to use it? Compute the Diebold-Mariano statistic for t = 1, ...,T :

DM =
√
T
µ̂dt
σ̂dt

where µ̂dt and σ̂dt are the mean and standard deviation of dt
The null hypothesis of no differences is equivalent to H0 : E(dt) = 0

Rafał Weron (Wrocław Tech, PL) IIF Lecture: Electricity Price Forecasting, part I UNC Charlotte, ISEA2025, 3-4.03.2025 60 / 63



Forecast accuracy DM-type tests �

Diebold-Mariano (DM) test cont.
If dt is covariance stationary, the DM test statistics is asymptotically normal
In practice we test twice, using one-sided tests with alternatives

H1 : E(dt) < 0, i.e., forecasts of model 1 are better than those of model 2
HR
1 : E(dt) > 0, i.e., forecasts of model 1 are worse than those of model 2

e.g., at the α = 5% significance level
Due to intraday correlation of electricity prices we test:
For each hour: S r

i ,h(P̂d ,h,Pd ,h) = |Pd ,h − P̂d ,h|r

Jointly for 24h: S r
i (P̂d ,Pd) =

∑24
h=1 |Pd ,h − P̂d ,h|r

The DM test compares forecasts, not models!
Critical value Reject H0

⇒ HR
1 is true

Reject H0

⇒ H1 is true

Test statistic
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Forecast accuracy DM-type tests �

Python snippet: DieboldMariano.ipynb
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Forecast accuracy DM-type tests �

Articles & working papers on https://p.wz.pwr.edu.pl/∼weron.rafal/Publ

See yourself:
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