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Introduction Energy forecasting literature

Energy (load, price, wind & solar) forecasting®
(Hong, Pinson, Wang, Weron, Yang & Zareipour, 2020, IEEE OAJPE)
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Introduction Energy forecasting literature

Percentage of energy forecasting publications*

(Hong, Pinson, Wang, Weron, Yang & Zareipour, 2020, IEEE OAJPE)
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IEEE Trans. Sustain. Energy (138/2555)
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Renew. Energy (455/18247)
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Energy Convers. Manag. (307/14295)
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* Top 10 journals in each area (2010-2024);
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** Numbers of forecasting/total publications for
each journal are shown in parentheses
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Power markets across the globe
Competitive power market structures across the globe

B Power exfhange
= Power pool
B Cost-based

= Bilateral trading
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https://datacatalog.worldbank.org/search/dataset/0065245/global_power_market_structures_database

Introduction Power markets across the globe

Power pool vs. power exchange

Power pool: one-sided auction Power exchange: two-sided auction
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— Supply curve — Supply curve
- = Estimated demand = = Demand curve
T
1 \\
1 \
.g 1 .8 \
= = \
a 1 o \
! \
! \
MCP MCP .
MCV MCV
Volume Volume

Rafat Weron (Wroctaw Tech, PL) IIF Lecture: Electricity Price Forecasting, part |

UNC Charlotte, ISEA2025, 3-4.03.2025 5/63



Power markets across the globe
National vs. zonal vs. nodal pricing

Single National Price Zonal Pricing Nodal Pricing
Uniform price clears System divided It0a [ 7500 price _ System divided into
across entire market. small number of zones A r- many “nodes” with
with individual prices. P2 individual prices.
/- Zone B price
International examples: International examples: - International examples:
== ¢ =
=0 7 Zone C price
UK Key: 7 USA Key:
| ] Single price - c @ GB Price nodes
Boundaries - . (lustrative)
Germany for illustration , — ZoneDprice New Zealand
purposes only - I*I
Poland ol Canada
Zone E price ~N Zone F price
) g
- ‘ Singapore
r~
W @
Sweden Zone G price
Adapted from: National Grid ESO (2022) Net Zero Market Reform
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https://www.nationalgrideso.com/document/258871/download

Introduction Power markets across the globe

North American landscape

System Operators in the North American Power Grid

Independent System Operators (ISO)

@ Reliable & effective grid operation
@ Scheduling of power generation
@ Stability of supply (transmission)

ERCOT (Texas) is a Regional

Transmission Organization (RTO)

@ Does not cross state lines

time2market

Note: This map is intended for illustrational purposes only. Area borders
have been aligned with official sources in April 2024.

Legend:

B Aeso

B miso
OIESO

W 1so-NE
NYISO
PIM

M spp

W ercot

Il cenAcE

M caiso

\_[ Not operated by ISOs

Map Template: mapsva.com

odal pricin I?lll Day-ahead (DA) and real-time (RT; ~5% of volume) markets
& Nodal pricing il Day
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https://www.time2market.net/blog/a-comparison-of-european-and-american-power-markets
https://www.time2market.net/blog/a-comparison-of-european-and-american-power-markets

Introduction Power markets across the globe

European landscape

Transmission System Operators (TSO)

@ Operate the transmission system

Members of the Price Coupling
of Regions (PCR) System

European Day-Ahead Market Coupling

@ Ensure the grid is balanced
@ Exception: Germany has 4 TSOs Legend: >

. Members of PCR EUPHEMIA

Cereos
[] Not members

Market coupling

@ Price Coupling of Regions —
EUPHEMIA (DA)

o Flow-Based Market Coupling (DA) )
@ XBID mechanism (ID)

P 2

& Zonal pricing il Day-ahead (DA) and intraday (ID; 3-20% of volume) markets
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https://www.time2market.net/blog/a-comparison-of-european-and-american-power-markets

Power markets across the globe
Market coupling — (more) similar prices in bidding zones

Day-ahead prices in the European Union in 2025 (week 8)
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Introduction Power markets across the globe

Timeline of DA and ID trading activities in Europe

(Maciejowska, Uniejewski & Weron,

2023, Oxford Res. Enc.)

Hourly Hourly day-ahead coupled
day-ahead auction (AT, BE, DE, DK, Fl,
auction (CH) FR, NL, NO, PL, SE)
Auction
T
11:00 12:00 Day-ahead market
| Day d-1 Day d
Intraday market
15 min 60 min 30 min 60 min
auction (AT, auction auction auction
BE, DE, NL) (CH) (FR) (CH)
Auction
: : —— ;
. 14:00 15:00 16:30 17:00 11:15
Continuous
(24/7) trading up | | Continuous Continuous
until delivery (DK, FI, NO, ] (AT, BE, CH,
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https://doi.org/10.1093/acrefore/9780190625979.013.667

Introduction Power markets across the globe

Day-ahead (> 90% of papers) vs. intraday (real-time) markets
(Maciejowska, Uniejewski & Weron, 2023, Oxford Res. Enc.)

Bidding for day d Bidding ford + 1 Trading for day d starts
> Dayd-1 >> Day d > > Dayd-1 » Day d >
Prices for 24h of day d HOL.JF 1 Ve
Hour 24 AyVWsapmvwamwvwpvpwavipne
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Model taxenomy
Model taxonomy: 2014 vs. 2022

Weron (2014, IJF) — Weron & Ziel (2022, DFG-NCN project PRIORITY)

[ Electricity price forecasting (EPF) ]

and modeling approaches

|

i
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http://dx.doi.org/10.1016/j.ijforecast.2014.08.008
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Introduction Model taxonomy

Day-ahead point forecasting: Univariate ...
(Ziel & Weron, 2018, ENEECO)
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https://doi.org/10.1016/j.eneco.2017.12.016

Introduction Model taxonomy

Price athourh =1
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Introduction Model taxonomy

.. functional (data analysis)
(Chen & Li, 2017, JBES; Chen et al., 2019, Ann.Appl.Stat; Wang & Cao, 2023, Environmetrics)

Smoothed electricity log price curves 5 July 1999--11 June 2000
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https://doi.org/10.1080/07350015.2015.1092976
https://doi.org/10.1214/18-AOAS1234
https://doi.org/10.1002/env.2792

Introduction Model taxonomy

... or supply & demand curves?
(Ziel & Steinert, 2016, ENEECO — ‘X-model’; Shah & Lisi, 2020, J.Forecasting)
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‘“Toy' models

© 'Toy' models

®© 6 6 6 ¢ o

The forecasting setup

Naive models

(Auto)regressive models
Nonlinear AR models

Exponential smoothing models )
Supply stack models

(Wroctaw Tech, PL

International Journal o Forecasting 30 (2014) 1030-1081

Contents lists available at ScienceDirect

(2014)
International Journal of Forecasting

journal homepage: www.elsevier.com/locatefijforecast

Review

Electricity price forecasting: A review of the state-of-the-art
with a look into the future

Rafat Weron

Wi

Renenabiesnd Sustainable Ener

Contents lists available at ScienceDirect (2018) r—

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Recent advances in electricity price forecasting: A review of probabilistic
forecasting

Jakub Nowotarski, Rafal Weron’

g (EPF) over
lo explain the
ppportunities
e paper also
next decade
es involving
i) statistical

Department of Of
Applisd Enersy 293 (2021) 116983

ArTICL

Contentslsts available at ScienceDircet
Applied Energy

= Journal homepage: . slsevier.com/locate/apenergy

Avtoregression

Neural network

Forecasting day-ahead electricity prices: A review of state-of-the-art
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http://dx.doi.org/10.1016/j.ijforecast.2014.08.008
http://dx.doi.org/10.1016/j.rser.2017.05.234
https://doi.org/10.1016/j.apenergy.2021.116983

The forecasting setup
Forecasting setup: Fixed, expanding & rolling windows

Fixed calibration window Test window

Expanding calibration window (recursive scheme)  Test window

Rolling (long) calibration window Test window
N AL

B e =

Rolling (short) Test window
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The forecasting setup
‘Toy’ models for point forecasts

@ Let us fix the notation:
° Pt P24d+h = Py is the price for day d and hour h
° Pt Pd ,hld—1 is the forecast of Py computed on day d — 1

wheret=1,....T,d=1,. ,24andh:1 .24

@ The prediction error or residual is given by: ¢, = P; — Pt

@ Consider five classes of ‘toy’ models:
O Naive
Q (Auto)Regressive
© Nonlinear AR
© Exponential smoothing
@ Supply stack
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‘“Toy' models Naive models

Naive models
(Nogales et al., 2002, TPWRS; Weron, 2014, |JF; Lago et al., 2021, APEN)

o Naive (persistent, white noise) forecast:

praive  _ Py_1p for d = Tue, Wed, Thu, Fri
oho Pg4_7, for d = Mon, Sat, Sun
i aee ) A7)
@ Simpler alternatives: Pyh = Pa-1nand Py = P74

° P( ) is easier to compute than gf,ive and, unlike 15((:,),, captures weekly effects
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https://doi.org/10.1016/j.apenergy.2021.116983

‘Toy' models (Auto)regressive models

Multiple regression
Ye = Bo + ﬁlxl,t + 62X2,t +- ﬁkxk,t + €t

@ The predictors can be:
o different variables, e.g., x1,+ — load, x ; — RES generation
o lagged values of the same variable, e.g., x1,+ = yt—1, X2+ = yt—2 — autoregression
e or a combination of both
o Coefficients 1, ..., Bx measure the marginal effects
e after taking account of the effect of all other predictors

@ The forecast y; of y; is obtained by setting ¢, =0
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(s ez e st
(Ordinary) Least Squares (OLS) estimation

@ The OLS chooses 3;'s that minimize the sum of squared errors (SSE):

- argmm Z £; = argmm Z —(Bo+ Bixae + Boxae + -+ Brxur))?

Yt

o The estimated coefficients are denoted by 3 = [Bo, o ,Bk]

@ The process of finding Bi's is called:

e estimating model parameters
o fitting the model to the data
o learning (training) the model
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‘Toy' models (Auto)regressive models

Regression in matrix form

@ The multiple regression model for t =1,..., T
Yi = Po+ Pixee + Baxor + -+ BiXer + €
@ Can be written in matrix form with OLS solution:
y=XB+e = p=(XX)'Xy
where y = (y1,...,y7), e =(e1,...,¢e7), B=(bo,...,B«) and
1 X110 X1 ... Xk1
X — 1 x1.72 x2.72 le’2

1 X1, X, -+ Xk,T
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(Auto)regressive models
Expert ARX-type models

Consider an autoregressive structure with exogenous variables:

7 7 K i
Pan= Yo BiPacin > BiaDi+) 5:‘+14XC(/)7 + Ed,h

AutoRegressive effects D; = Mon, ... eXogenous variables

@ There can be no more dummies than categories — set 3y = 0 if all D;'s are used
o Also set 3y = 0 if the mean is removed from Py j beforehand
@ Special cases:
o Naive model P((,b), for By =1and Bix1 =0
e AR(7), sparse AR(7) with some AR lags missing
o ARX(7) with K > 1, sparse ARX(7) with some AR lags missing
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“Toy' models Nonlinear AR models

Linear regression vs. single-output (shallow) neural network
(Jedrzejewski, Lago, Marcjasz & Weron, 2022, IEEE-PEM)
(a) (b)
£ Electricity Price
Forecasting

model inputs model output model inputs hidden layer model output

The Dawn of Machine Learning

Pd—1,h Pd—1,h

Pd—2,h Pd-2,h

Pd—17,h \ Pd—7,h
Xa,n —> Xan
Dnton / Drton

uy \

" @
/ By Arkadiusz Jedrzejewski, Jesus Lago,

Un Grzegorz Marcjasz, and Rafat Weron

N\

Dsun Dsun
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https://doi.org/10.1109/MPE.2022.3150809
https://doi.org/10.1109/MPE.2022.3150809

Nonlinear AR models
What are the differences?

e Computational complexity

o Linearity < non-linearity (hidden layers)
@ Optimization

o OLS < back-propagation, Levenberg-Marquardt algorithm, ...
@ Execution time (in MATLAB)

o Fast < slow ... ca. 400x slower for one run!
0.061 vs. 24.57 sec. for 7 days on a laptop with i7-1065G7

@ Stability

o Always the same parameters/forecasts < different for each run,
dependent on starting parameters
e Solution: committee machines — ensemble averaging
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“Toy' models Nonlinear AR models

Number of hidden neurons vs. forecast accuracy
(Marcjasz, Uniejewski & Weron, 2019, IJF)

@ The higher are the price fluctuations (— larger errors) the more neurons are needed

@ ... but the dependence is not constant over time (seasonality)

GEFCom: ANNj;

GEFCom: SCANN;-HP,
10.5 8.8

NP: ANN; o, NP: SCANN;-S,

115
o ———(SC)ANN,
Sl — BOARX | fI | —— = — 8.7
g 10.4
§ 1.3 8.6
10.3
o
11.2 .
gp 2 8.5
-
5]
2 11 10.2 8.4
2345678910 2345678910 2345678910 2345678910
# hidden neurons # hidden neurons # hidden neurons # hidden neurons
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https://doi.org/10.1016/j.ijforecast.2017.11.009

“Toy' models Nonlinear AR models

Number of runs (ensemble size) vs. forecast accuracy
(Marcjasz, Uniejewski & Weron, 2019, IJF)

@ The more runs (— longer computational time) the better

@ The prediction error decays as a power law

—_
I
ot

GEFCom: ANN, GEFCom: SCANN,-HP,;» NP: ANN, o, NP: SCANN,-8,,

—
%)

10.5

11

Average WMAE (in %)

8 .6
12345678910 12345678910 12345678910 12345678910
n n n n
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Exponential smoothing models O
Additive Holt-Winters method: Component form

Forecast eq.: Jerne = Ce + hbe + Seyh-miks1)
gt - O[(_yt - St—m) + (1 - OZ)(gt_]_ + bt—l) LeVeI
bt = ﬁ(ét - gt—l) -+ (1 - ﬁ)bt_]_ Trend
ss=(e —l) + (L —7)St—m Seasonality

Smoothing
equations:

where

@ h is the forecast horizon (steps ahead), m is the period

@ k is the integer part of h;ml = estimates come from the final period of the sample
0 < a,fB,7 <1 are estimated numerically by minimizing the sum of squared errors:

T

-
ng = Z(Yt - )7t)2
t=1

t=1
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‘“Toy' models Exponential smoothing models €

The family of exponential smoothing methods
(Hyndman & Athanasopoulos, 2021, OTexts; Hyndman, Koehler, Ord & Snyder, 2008, Springer)

Trend Component Seasonal Component
N A M
(None) (Additive) (Multiplicative)
N (None) (N,N) (N,A) (N,M)
A (Additive) (AN) (A,8) (A,M)
A; (Additive damped) (Ag,N) (Aq,A) (Ag,M)

Some of these methods we have already seen using other names:

Short hand Method

(N,N) Simple exponential smoothing

(A,N) Holt’s linear method

(A4,N) Additive damped trend method

(A,A) Additive Holt-Winters’ method
(A,M) Multiplicative Holt-Winters’ method
(Ag,M) Holt-Winters’ damped method
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https://otexts.com/fpp3/taxonomy.html
http://www.exponentialsmoothing.net

Exponential smoothing models O
Python snippet: ToyModels.ipynb

O Product Solutions Resources Open Source

& lipiecki/ energy-analytics-2025 ' Public

<> Code @ Issues 17 Pull requests @ Actions ﬁa Projects

ﬁ lipiecki update

data first commit
notebooks update
D README.md first commit
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https://github.com/lipiecki/energy-analytics-2025

Supply stack model

(Weron & Ziel, 20xsx)
Fundamental approach from the subclass of parsimonious structural models

Assumptions:
o Island grid, i.e., no imports or exports
@ The power plant park is composed of J units
@ Every unit j = 1,..., Jis characterized by its
e installed capacity AC; (in MW)

e marginal cost MC; (e.g., in EUR, USD) of
producing an additional MWh by generator j
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‘“Toy' models Supply stack models

Supply stack model cont.
(Weron & Ziel, 20x)

. ) K AC, MC, Type CC,

o Consider a park composed of J = 15 units 18000 5 CHP 8,000
o Roughly corresponds to Germany in 2018 2 6,000 0 Biomass 14,000

> 3 3,000 0 Hydro 17,000

e 10 different types of generators 4 8000 0 Wind 25,000

o Th i+ ord L b 5 4,000 0 Solar 29,000
e merit order curve is given by 6 10000 10 Nuclear 39,000

7 11,000 20  Lignite 50,000

_ ) 8 6,000 25  Lignite 56,000

MO(x) = MCjy 9 9,000 30 Coal 65,000

_ _ 10 6,000 35 Coal 71,000

where x is the volume in MW and 11 7,000 45 NG 78,000

. ) ) ) 12 6,000 55 NG 84,000

) J(X) = maXJ{CCJ < X} IS the marglnal unit 13 4,000 65 NG 88,000

o CC; =>Y_, AC; is the cumulative capacit 14 3000 80 Oil 91,000
2= AG pacity 15 3,000 95 Oil 94,000
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‘“Toy' models Supply stack models

Supply stack model: Price setting
Net demand of 53,000 MW yields a spot price of 25 EUR/MWh

CHP
Biomass
Hydro
Wind

Solar

[09]
(=)
!
oomOm@

]
=]
u
O
]

Nuclear
Lignite
Coal
NG

Oil

Marginal Costs/Price in EUR/MWh
[N
o
!

Rafat Weron (Wroctaw Tech, PL)

Electricity price = 25 EUR/MWh

20000

—— Net demand = 53000 MW

40000 60000 80000
Volume in MW
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‘“Toy' models Supply stack models

Point forecasts of 3 simple models: Germany, Sun 30.07.2017

Naive ﬁgf’},"e, sparse AR(7; lags = 1,2,7, dummies = Mon, Sat, Sun), and the supply stack model

§45*

=

~

=

R 40

3 35

g

Y

=2 30+

&

=

Q25,

QL ©  Naive

3 = Expert :

(g 20 -| & Stack *0000e *

- —— Actual D D1
e
1
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Time
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d point forecasts

© Beyond point forecasts

Probabilistic forecasts
Reliability & sharpness
Postprocessing point forecasts
Historical simulation
Conformal prediction )

(Wroctaw Tech, PL

International Journal o Forecasting 30 (2014) 1030-1081

Contents lists available at ScienceDirect

(2014)
International Journal of Forecasting

journal homepage: www.elsevier.com/locatefijforecast

Review

with a look into the future
Rafat Weron

Electricity price forecasting: A review of the state-of-the-art @m“m

Renenabie snd Sustinable Ener

Contents lists available at ScienceDirect (2018) r—

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Recent advances in electricity price forecasting: A review of probabilistic
forecasting

Jakub Nowotarski, Rafal Weron’

g (EPF) over
lo explain the
ppportunities
e paper also
next decade
es involving
i) statistical

Department of Of
Applisd Enersy 293 (2021) 116983

ArTICL

Contentslsts available at ScienceDireet
Applied Energy

= Journal homepage: viww.slsevier.com/locate/apenergy

Avtoregression

Neural network.

Forecasting day-ahead electricity prices: A review of state-of-the-art

algorithms, best practices and an open-access benchmark
Jesus Lago **, Grzegorz Marcjasz ", Bart De Schutter*, Rafat Weron >

+Del Cenerfor Systems and Conrol, DI Unversy of Technolgy, Dl T Neterands
*Diparomes of Operadons Recarch and Busivess Inielignce, Wroeaw Urivrsty of Scence and Technolegy, Wroca, Poland
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ARTICLE INFO ABSTRACT
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http://dx.doi.org/10.1016/j.ijforecast.2014.08.008
http://dx.doi.org/10.1016/j.rser.2017.05.234
https://doi.org/10.1016/j.apenergy.2021.116983

Beyond point forecasts Probabilistic forecasts

Probabilistic (interval, density) forecasting
(Gneiting & Katzfuss, 2014, Annu Rev)

We cannot observe the true underlying distribution = we cannot compare the predictive
distribution F with the actual one F ... only with past observations

Gneiting et al. (2007a, 2007b, 2014) argue
that probabilistic forecasting aims to
‘maximize the sharpness of the predictive
distributions, subject to reliability’
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http://dx.doi.org/10.1146/annurev-statistics-062713-085831

Reliability (calibration, unbiasedness)

@ Refers to the statistical consistency between F and the observations
@ If a 90% PI covers 90% of the observed prices, then this Pl is said to be:

o reliable (Pinson et al., 2007; Pinson & Kariniotakis, 2010)
o well calibrated (Gneiting et al., 2007a, 2007b, 2014)
e unbiased (Taylor, 1999)

@ Example: 13 o or ‘misses’ and 155 © or ‘hits’ — the coverage is % ~ 92%
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https://doi.org/10.1002/we.230
http://dx.doi.org/10.1146/annurev-statistics-062713-085831
 https://doi.org/10.1002/(SICI)1099-131X(199903)18:2<111::AID-FOR713>3.0.CO;2-C

Beyond point forecasts Reliability & sharpness

Sharpness
(Pinson et al., 2007, Wind En; Gneiting & Raftery, 2007, JASA; Gneiting & Katzfuss, 2014, Annu Rev)

@ Refers to the concentration or tightness of the predictive distributions
e Derives from the idea that reliable predictive distributions of null width correspond
to perfect point predictions
o Reliability is a joint property of the predictions and the observations
e Sharpness is a property of the forecasts only

Sharper forecast

D—9WI-A-W
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https://doi.org/10.1198/016214506000001437
http://dx.doi.org/10.1146/annurev-statistics-062713-085831

Beyond point forecasts Postprocessing point forecasts

Postprocessing point forecasts
(Vannitsem et al., 2018, Elsevier; Chen et al., 2024, Ann Appl Stat; Lipiecki et al., 2024, ENEECO)

Q  PointForecasts

ﬁ

Postprocess

CP (+HS)

point2quant()

b
QuantForecasts
QuantForecasts paverage() m
I ) Combine QuantForecasts
QuantForecasts qaverage() ~_~ ~
n v
QuantForecasts

| Delimited file

| (csv, tsv, txt)

l loaddlm() o

average()

decouple()

u
PointForecasts

conformalize()
Postprocess ——————» \_

crps()
inball()
coverage() . -

@ HDFS5 file

Evaluate

QuantForecasts

saveforecasts()
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https://doi.org/10.1016/C2016-0-03244-8
https://doi.org/10.1214/23-AOAS1784
https://doi.org/10.1016/j.eneco.2024.107934

The ‘normal’ benchmark

@ Assume that the prediction errors are N(u, 0?)-distributed
@ Training corresponds to estimating /i and 6 of e, =y, — y; for t € S
o S is the training set (or calibration window)

@ The 7-th quantile conditional on y; is obtained via:
Grige = Je + fi + 5Fy ()

where Fy*(7) is the inverse of the standard normal CDF, i.e., with = 0,0 =1
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Beyond point forecasts Historical simulation

Historical simulation

(Hendricks, 1996, EPR; Alexander, 2008, Wiley; Nowotarski & Weron, 2018, RSER)

@ A model-independent approach that computes

CAIﬂyt - _),}t + QT(Et)

where Q. (g;) is the sample T-quantile of
ee=yr—Jefortes

@ The term historical simulation (HS) can be
traced back to the early 1990s and the
beginnings of Value-at-Risk (VaR)

@ Similar to bootstrapped residuals (see, e.g.,
Hyndman & Athanasopoulos, 2021, FPP3),
but each ¢, is sampled exactly once

FEDERAL RESERVE BANK of NEW YORK

ECONOMIC POLICY REVIEW
Evaluation of Value-at-Risk Models Using
Historical Data

April 1996Volume 2, Number 1
JEL classification: G11, G15, G28

Author: Darryll Hendricks

Recent studies have underscored the need for market participants to develop
reliable methods of ing risk. One i ingly popular technique is the use
of “value-at-risk” models, which convey estimates of market risk for an entire
portfolio in one number. The author explores how well these models actually
perform by applying twelve value-at-risk approaches to 1,000 randomly chosen
foreign exchange portfolios. Using nine criteria to evaluate model performance, he
finds that the approaches generally capture the risk that they set out to assess
and tend to produce risk estimates that are similar in average size. No approach,
however, appears to be superior by every measure.
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Beyond point forecasts Conformal prediction ©

Conformal prediction
(Vovk et al., 2005, Springer; Kath & Ziel, 2021, |JF; Lipiecki et al., 2024, ENEECO)

@ For t € S calculate the so-called non-conformity scores
- . X
)‘f - |5t| = |Yt - ytl, then compute e < & >

Grihaty. = Ve — Lr<cosQor(A) + Lr205Qo1-1)(A)

where Q.(\) is the 7-th sample quantile of A,
@ This version is called inductive or split CP, however,
a ‘split’ is not needed if y,'s are already available e €R
o HS works with ¢,’s, CP with |e|'s — symmetric F
@ Using e1,...,e7, HS approximates the whole A
distribution, CP only the positive half — smoother F
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Conform prediction ©
Python snippet: UncertaintyQuantification.ipynb

O Product Solutions Resources Open Source

& lipiecki/ energy-analytics-2025 ' Public

<> Code @ Issues 17 Pull requests @ Actions ﬁa Projects

ﬁ lipiecki update

data first commit
notebooks update
D README.md first commit
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Forecast accuracy

@ Forecast accuracy

Absolute and square errors
Percentage errors

Scaled and relative errors
Testing for coverage

CRPS and the pinball score
DM-type tests )

International Journal o Forecasting 30 (2014) 1030-1081

Contents lists available at ScienceDirect

(2014)
International Journal of Forecasting

journal homepage: www.elsevier.com/locatefijforecast

Review

with a look into the future
Rafat Weron

Electricity price forecasting: A review of the state-of-the-art @m,,m

Renenabiesnd Sustainable Ener

Contents lists available at ScienceDirect (2018) r—
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journal homepage: www.elsevier.com/locate/rser

Recent advances in electricity price forecasting: A review of probabilistic
forecasting
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Forecasting day-ahead electricity prices: A review of state-of-the-art
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http://dx.doi.org/10.1016/j.ijforecast.2014.08.008
http://dx.doi.org/10.1016/j.rser.2017.05.234
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Forecast accuracy Absolute and square errors

Measures of (point) forecast accuracy
(Hyndman & Koehler, 2006, [JF; Weron, 2014, 1JF; Kolassa, 2020, IJF; Lago et al., 2021, APEN)

@ Mean Absolute Error ;
MAE = % thl et

@ (Root) Mean Square(d) Error

where |e;| = |P, — P,| is the absolute and £2 = (P, — P;)? is the square(d) error

@ Note: MSE is minimized by the mean, but MAE by the median
= when using OLS measure forecast accuracy with MSE, not MAE
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Percentage errors: MAPE and DMAE

@ Mean Absolute Percentage Error

|€t‘

MAPE=1%"" A

lee]

Pt
o MAPE works well when P; > 0, e.g., in load forecasting
o Is unreliable for electricity prices or temperatures (can be < 0)

where

o Instead of dividing by P; we can divide by the daily mean Py, = o 2%, P; to
obtain the Daily-weighted MAE for day d:

24
DMAEy = 5 Pl el
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Percentage errors: Symmetric MAPE (sMAPE)

See also https://robjhyndman.com/hyndsight/smape
o MAPE puts a heavier penalty on negative than on positive ¢;
e Makridakis (1993) proposed the ‘symmetric MAPE":

P
MAPE,, — 200 let] 200 [Pe—
3 M Zt 1 [Pet-P] Zt 1 |Pt+Pt

o Armstrong’s (1985) version had no | - | in the denominator
o Both have a problem when |P; + P;| ~ 0

@ Chen & Yang (2004) defined it as (also dropped the ‘100'):

T Pi—P|
MAPEcy = 2 el [Pt
S Y T Zt:l IPt“‘F‘Pt T Zf 1 |Pt|+|Pt

e Still, it is undefined when P; = Pt =0
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Scaled errors
(Hyndman & Koehler, 2006, |JF)
@ The Mean Absolute Scaled Error is defined by:

AN el T
MASE = + Zt:—r+1 :%: T Teem Zt:'r—‘rl o]

S o
T—m t=m+1

° e, = |P: — Pt_pm| is the MAE of a naive prediction on the training set
e m is the period for seasonal data (e.g., m = 4 for quarterly)

o Interpretation: if MASE < 1 then our prediction is better than naive
(on the training set), if MASE > 1 then it is worse
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Forecast accuracy Scaled and relative errors

Relative errors
(Hyndman & Koehler, 2006, IJF; Lago et al., 2021, APEN)

@ MASE is problematic when:

o forecasting methods use different calibration windows / training sets
o P: exhibits ‘'long’ periods of higher/lower values

@ Lago et al. (2021, APEN) argue the a better metric is the relative MAE:

MA Emet‘hod

MAE = relMAE = ————
' e MA Ebenchmark

@ The benchmark can be a naive model (as in MASE)
@ Can easily be applied to other metrics, e.g., the RMSE

@ Interpretation: if rIMAE, rRMSE < 1 then our prediction is better than the
benchmark, if rMAE, rRMSE > 1 then it is worse
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Forecast accuracy Testing for coverage

Unconditional coverage (UC)

2 1 _
4/' 1 @ Some studies report only the so-called
- ., 1 Pl Coverage Probability
LA S A PICP = =) /- 100%
. . - T t:1
o (Empirical) coverage is measured by @ Other subtract it from the nominal
£ P e Pl coverage to obtain the so-called
= 1L Pk ePl— Average Coverage Error
0 if P ¢ Pl— o 'miss’
ACE = PICP — PINC
and should match the nominal rate where PINC — PI Nominal Coverage

P(P, e P)=P(/, =1) = (1 — a)
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UC and the Kupiec test

(Kupiec, 1995, J Derivatives)

@ Checks whether ACE = 0 or P(/; = 1) = (1 — «), given that o are independent

o Equivalent to testing that /; is i.i.d. Bernoulli with mean (1 — «)
o Rejects the null (‘good PI') if the percent of misses is statistically different from «

@ The likelihood ratio statistics for unconditional coverage:

1—c)rcm
LRyc = —2log {((l_ﬂgﬂ} (1)

o ¢ = (1 — «) is the nominal coverage rate

mo
el the percentage of

e ng and ny are respectively the number of 0's and 1's in /;

e T =
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Forecast accuracy Testing for coverage

Independence, conditional coverage and the Christoffersen test
(Christoffersen, 1998, IER)

@ In the Kupiec (1995) test the clustering of o ‘misses’ does not matter,
only the total number of violations plays a role

o Christoffersen (1998) introduced the Independence and Conditional Coverage tests
@ Ind is tested against an explicit first-order Markov alternative

o Like LRyc, also LRjq ~ x?(1)
@ CC is simply a joint test for Ind and UC

o If we condition on the first observation, then

LRCC = LRUC + LRInd ~ X2(2)
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Continuous Ranked Probability Score (CRPS)

(Gneiting & Raftery, 2007, JASA; Gneiting & Katzfuss, 2014, Annu Rev; Nitka & Weron, 2023, ORD)

@ The CRPS is the standard metric for evaluating probabilistic forecasts:

CRPS(F, x) = /°°

N 2
- (F(Y) - l{xéy}) dy
where F is the predictive distribution and x is the observation, e.g., electricity price

@ It is a proper scoring rule, i.e., quoting the true distribution as the forecast is an
optimal strategy in expectation

@ Problem: in practice we often work with a finite set of quantile forecasts
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CRPS and the pinball score

(Gneiting & Raftery, 2007, JASA; Nowotarski & Weron, 2018, RSER; Nitka & Weron, 2023, ORD)

@ The CRPS can be approximated by:
CRPS( F ,X) ~ MZ (4, x,q:)

where
e g1 < ...< gpm is an equidistant dense grid of probabilities, e.g., 99 percentiles
e §= l:__l(q) is the quantile forecast for quantile level g € (0,1)

and the pinball score is defined as:

PS(§,x,q) = (1{x<a} - CI) (G —x)

@ Note: The scaling factor of 2 is usually omitted in practice
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Pinball score (or loss) in more detail

PS(4,x,q) = (Ljxeq) — ) (4 —x) =

@ Also known as the quantile score, check function
or the linlin/bilinear/newsboy loss

@ For an Aggregate PS (or APS) average:

e across all t in the test period
e across all quantiles — CRPS

(1-¢g)(§g—x) forx< 4§
q(x—49)

forx > g
1.5 ‘
—q=50%
—Qq=25%
1 q=5%
0.5
0
-2 1 0 1 2
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Testing for equal predictive performance
(Diebold & Mariano, 1995, JBES; Diebold, 2015, JBES)

@ When faced with forecasts from two (or more) models we can rank them based on
some score function (the lower the better):

N T ~
S= %thl S(F,x)

o But if we want to know whether the forecasts of model 1 are significantly better
(more accurate) than those of model 2, then we need to use a test

@ The most popular is the DM test for unconditional predictive ability
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DM-type tests ©
Testing for equal predictive performance cont.

@ The test of Giacomini & White (2006, Econometrica) accounts for parameter
estimation uncertainty and tests conditional predictive ability (CPA)

@ DM and GW tests can be used for nested and non-nested models if the calibration
window does not grow with sample size (Giacomini & Rossi, 2013)

o This:
@ rules out expanding windows

2 admits fixed and rolling windows
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Testing for equal predictive performance cont.

@ Model confidence set of Hansen et al. (2011, Econometrica) is similar to DM

@ But uses bootstrap to approximate the distribution of the test statistics
e Forecast encompassing of Harvey et al. (1998, JBES)

@ The null says that the forecasts of model 1 do not include more information than
those of model 2
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Diebold-Mariano (DM) test

@ It is an asymptotic z-test with null that the mean of the loss differential series:
dt:SI(Fv’Dt)_52(F7'Dt)
is zero, where S;(+, ) is the score function for model /, e.g., ||, €2, Pinball score

@ How to use it? Compute the Diebold-Mariano statistic for t =1, ..., T

~

DM = /T Hd:

~

O'dt

where [i4, and G4, are the mean and standard deviation of d;

@ The null hypothesis of no differences is equivalent to Hy : E(d;) = 0
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Diebold-Mariano (DM) test cont.

o If d; is covariance stationary, the DM test statistics is asymptotically normal
@ In practice we test twice, using one-sided tests with alternatives

o Hy:[E(d:) <0, i.e., forecasts of model 1 are better than those of model 2
° Hf :E(d) > 0, i.e., forecasts of model 1 are worse than those of model 2

e.g., at the a = 5% significance level
@ Due to intraday correlation of electricity prices we test:
e For each hour: S,fh(l-c’d,h, Pd.n) = |Pan— /Sd,h|r
o Jointly for 24h: SI(Py, Py) = 324 1 |Pyp — Pyl

@ The DM test compares forecasts, not models!

Reject Hp Critical value

= Hj is true

Reject Hyp

= Hf is true

Test statistic
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DM-type tests ©
Python snippet: DieboldMariano.ipynb

O Product Solutions Resources Open Source

& lipiecki/ energy-analytics-2025 ' Public

<> Code @ Issues 17 Pull requests @ Actions ﬁa Projects

ﬁ lipiecki update

data first commit
notebooks update
D README.md first commit
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https://github.com/lipiecki/energy-analytics-2025
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