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Introduction

Energy (load, price, wind & solar) forecasting*
(Hong, Pinson, Wang, Weron, Yang & Zareipour, 2020, IEEE OAJPE)

* Number of Scopus indexed publications (2.2025 update)
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https://doi.org/10.1109/OAJPE.2020.3029979


Introduction Power markets across the globe

Competitive power market structures across the globe

Data source: Akcura (2024)
Global Power Market Structures Database
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Introduction Power markets across the globe

Power pool vs. power exchange
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Introduction Power markets across the globe

Day-ahead (> 90% of papers) vs. intraday (real-time) markets
(Maciejowska, Uniejewski & Weron, 2023, Oxford Res. Enc.)

Day dDay d – 1

Bidding for day d

Prices for 24h of day d

Bidding for d + 1 Trading for day d starts

Day dDay d – 1

Hour 1

⁞

Hour 24
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Introduction Model taxonomy

Day-ahead point forecasting: Univariate ...
(Ziel & Weron, 2018, ENEECO)
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Introduction Model taxonomy

... multivariate ...
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Introduction Model taxonomy

... functional (data analysis) ...
(Chen & Li, 2017, JBES; Chen et al., 2019, Ann.Appl.Stat; Wang & Cao, 2023, Environmetrics)
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Introduction Model taxonomy

... or supply & demand curves?
(Ziel & Steinert, 2016, ENEECO → ‘X-model’; Shah & Lisi, 2020, J.Forecasting)
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Introduction Model taxonomy

What about mid- and long-term forecasts?
Mean Absolute Errors for 04.2018-04.2024 (Ghelasi & Ziel, 2025, RSER, Tab. 8)

Current – regress Pd,h on RES/load (RL) and fuel/CO2 prices (front-month futures), predict P̂d,h using seasonal RES/Load and fuel/CO2 futures
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Introduction Model taxonomy

Beyond one year: Survey of Professional Energy Forecasters
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Introduction Model taxonomy

Survey of Professional Energy Forecasters cont.
(Chawla et al., 2025, JCP)
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Model evolution

1 Introduction

2 Model evolution
(Auto)regressive models
Averaging across windows �
LASSO-Estimated AR (LEAR) �
Deep and interpretable ML
Temporal Hierarchy Forecasting

3 Beyond point forecasts

4 Wrap-up
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Model evolution (Auto)regressive models

Expert ARX-type models

The workhorse of EPF – autoregressive structure with exogenous variables:

Pd ,h = β0 +
∑7

i=1
βiPd−i ,h︸ ︷︷ ︸

AutoRegressive effects

+
∑7

i=1
βi+7Di︸ ︷︷ ︸

D1 = Mon, ...

+
∑K

i=1
βi+14X

(i)
d ,h︸ ︷︷ ︸

eXogenous variables

+ εd ,h

Special cases:

Naive model P(1)
d ,h for β1 = 1 and βi ̸=1 = 0

AR(7), sparse AR(7) with some AR lags missing
ARX(7) with K ­ 1, sparse ARX(7)
with some AR lags missing
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Model evolution (Auto)regressive models

Do we need exogenous variables?
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Model evolution (Auto)regressive models

Linear regression (ARX) vs. shallow neural network (NARX)
(Jȩdrzejewski, Lago, Marcjasz & Weron, 2022, IEEE-PEM)
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Model evolution (Auto)regressive models

Committee machines: #runs vs. forecast accuracy
(Marcjasz, Uniejewski & Weron, 2019, IJF)

The more runs (→ longer computational time) the better
The prediction error decays as a power law
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Model evolution Averaging across calibration windows �

What is the optimal calibration (training) window size?
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Longer windows → better reflect trends, more stable parameters
Shorter windows → quicker adapt to changes in price dynamics
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Model evolution Averaging across calibration windows �

Point forecast averaging: The idea
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‘AI/Engineering world’:
committee machines,
ensemble averaging,
expert aggregation
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Model evolution Averaging across calibration windows �

Simple averaging across calibration windows
Structural breaks: Pesaran, Pick (2011, JBES); EPF: Hubicka et al. (2019, IEEE-TSE)
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Model evolution Averaging across calibration windows �

IIF Distinguished Lectures on EPF: Averaging.ipynb

Experiment yourself:
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Model evolution LASSO-Estimated AR (LEAR) �

What is shrinkage (regularization)?

Minimize the residual sum of squares (RSS ≡ sum of squared errors)
+ a penalty function of the betas:

β̂ = argmin
βj

{ N∑
i=1

(
yi −

p∑
j=1

βjxi ,j

)2
︸ ︷︷ ︸

RSS

+λ
n∑

j=1

|βj |q︸ ︷︷ ︸
penalty

}

where λ ­ 0 is a tuning (or regularization) parameter
Most popular:

q = 2→ Ridge regression (Hoerl & Kennard, 1970, Technometrics)
q = 1→ Least absolute shrinkage & selection operator (Tibshirani, 1996, JRSSB)
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Model evolution LASSO-Estimated AR (LEAR) �

LASSO-Estimated AR (LEAR): Variable importance
(Uniejewski et al., 2016; Ziel, 2016; Ziel & Weron, 2018; Jȩdrzejewski et al., 2022; Uniejewski, 2024)

Experiment yourself:
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Model evolution Deep and interpretable ML

Multi-output shallow and deep neural networks (DNNs)
(Lago et al., 2021, APEN; Jȩdrzejewski et al., 2022, IEEE-PEM)
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Model evolution Deep and interpretable ML

What about performance?
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Model evolution Deep and interpretable ML

Interpretable AI: NBEATSx
(Olivares, Challu, Marcjasz, Weron & Dubrawski, 2023, IJF)
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Model evolution Deep and interpretable ML

Interpretable ML: What about performance?
(Olivares, Challu, Marcjasz, Weron & Dubrawski, 2023, IJF)

Tab. 3. Accuracy measures for day-ahead price forecasts (test sample of 2 years)

ARx1 LEARx DNN NBEATSx
MAE 2.01 1.74 1.68 1.62
rMAE 0.63 0.55 0.53 0.51
sMAPE 5.84 5.01 4.88 4.70

NP

RMSE 3.71 3.36 3.32 3.27
MAE 3.53 3.01 2.86 2.90
rMAE 0.73 0.62 0.59 0.60
sMAPE 13.64 11.98 11.33 11.61

PJM

RMSE 5.74 5.13 5.04 4.84
MAE 4.36 3.61 3.41 3.29
rMAE 0.54 0.45 0.42 0.41
sMAPE 17.73 14.74 14.08 13.99

EPEX-DE

RMSE 7.38 6.51 5.93 5.65
Daily recalibration [s] — 18.57 50.65 81.61

LEARx, DNN – LEAR and DNN models from Lago et al. (2021, APEN), after Erratum
NBEATSx – NBEATSx-I (interpretable configuration) from Olivares et al. (2023, IJF)
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Model evolution Temporal Hierarchy Forecasting

Temporal Hierarchy Forecasting (THieF)
(Lipiecki, Bilińska, Kourentzes & Weron, 2025, arXiv)
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Model evolution Temporal Hierarchy Forecasting

THiEF: Gains from reconciliation
(Lipiecki, Bilińska, Kourentzes & Weron, 2025, arXiv)
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Beyond point forecasts

1 Introduction

2 Model evolution

3 Beyond point forecasts
Do we need probabilistic forecasts?
Postprocessing point forecasts �
Combining probabilistic forecasts
Distributional Deep Neural Nets

4 Wrap-up
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Beyond point forecasts Do we need probabilistic forecasts?

Do we need probabilistic (interval, density) forecasts?
(Uniejewski & Weron, 2021, ENEECO)
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Beyond point forecasts Do we need probabilistic forecasts?

Are quantile-based trading strategies more profitable?
(Uniejewski & Weron, 2021, ENEECO)

Strategy Profit
Naive (4am–12pm) 33 065.29
Point forecasts-based 33 722.39
Quantile-based 1-99% 5-95% 10-90% 20-80% 25-75%
Q-Ave 41 317.92 43 328.89 43 432.31 43 289.09 43 033.88
F-Ave 39 848.26 43 369.44 44 052.04 44 088.11 43 130.34
QRM 41 163.29 43 054.28 43 124.12 43 731.54 42 240.25
LQRA(77) 42 360.05 44 135.49 44 713.52 44 684.40 43 624.65
LQRA(BIC) 42 886.10 43 993.23 44 502.81 45 396.21 42 741.57
LQRA(CV) 41 693.80 43 971.88 44 238.45 45 073.19 43 103.88

Quantile-based trading yields 19-34% higher profits than point forecasts-based!
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Beyond point forecasts Postprocessing point forecasts �

Postprocessing point forecasts with PostForecasts.jl
(Vannitsem et al., 2018, Elsevier; Lipiecki et al., 2024, ENEECO; Lipiecki & Weron, 2025, SoftwareX)

Experiment yourself:
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Beyond point forecasts Postprocessing point forecasts �

Quantile Regression Averaging (QRA)
(Nowotarski & Weron, 2015, COST)

…
Quantile regression:
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Beyond point forecasts Combining probabilistic forecasts

Combining probabilistic forecasts is tricky ...
(Lichtendahl et al., 2013, Mgnt Sci; Uniejewski et al., 2019, ENEECO; Taylor & Meng, 2023, arXiv)

Vertical (over probabilities), horizontal (quantiles → sharper CDF) ... or at any angle
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Beyond point forecasts Combining probabilistic forecasts

... but can be beneficial
(Lipiecki, Uniejewski & Weron, 2024, ENEECO; illustrated here using EPEX-DE data)

Skill score: % difference wrt the CRPS of N(0,σ̂(εd,h)) innovations; εd,h – prediction errors of the LEAR model
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Beyond point forecasts Distributional Deep Neural Nets

Distributional Deep Neural Nets (DDNN) perform well ...
(Jȩdrzejewski et al., 2022, IEEE-PEM; Marcjasz, Narajewski, Weron & Ziel, 2023, ENEECO)

Experiment yourself:
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Beyond point forecasts Distributional Deep Neural Nets

... but can fail miserably during volatile periods
(Lipiecki, Uniejewski & Weron, 2024, ENEECO; illustrated here using EPEX-DE data)

Skill score: % difference wrt the CRPS of N(0,σ̂(εd,h)) innovations; εd,h – prediction errors of the LEAR model
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Wrap-up

What to learn more? See the IIF Distinguished Lectures
https://p.wz.pwr.edu.pl/∼weron.rafal/Conf/IIF24

Slides, snippets, movies:
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