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Industrial Context



Activities of Group EDF

• Group EDF has a number of subsidiaries with different activities

(renewables generation, BESS operation, EV charging...).

• Nonetheless electricity price forecasting (EPF) is relatively new topic

for R&D (circa 2021).
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Price forecasting for EDF Renewables North America

• EDF Renewables operates 3

battery energy storage systems

(BESS) in California.

• US prices are nodal.

• They required an operational tool

for EPF on a day-to-day basis to

help them to decide on how to

optimize their battery.

• We developped a R library called

SEPP (Short-term Electricity Price

Prediction) for that purpose.

• SEPP allows for predictions on

different markets: day-ahead

(spot), real-time (intraday) and

anciliary services.
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Battery optimization at EDF RNA

SEPP is one of the 3 main inputs of Renewables’ Market Optimization

Engine (MOE).

In 2025: produce bid-offer curves directly from SEPP’s quantile forecasts

factoring revenue potential vs risk.
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SEPP framework

• SEPP is a pipeline that goes from scrapping the data with the right

API to performing prediction:

• SEPP uses an ensemble of models to yield both point forecasts

and quantile forecasts.

• SEPP is used operationally by EDF RNA: hence must remain light

computationally.

• SEPP being an operational tool makes it unconvenient for research

purposes. 6/33



SEPP models



Models inputs

California data is provided by YesEnergy.

For day d hour h the following features are used:

• Day-ahead prices of d − 1 and d − 7 for every hour.

• Citygate and SoCal gas prices of the previous day pGd−1.

• Forecasted load L̂d,h of day d for every hour h.

• Forecasted wind generation Ŵd,h of day d for every hour h.

• Forecasted solar generation Ŝd,h of day d for every hour h.

• Calendar features (day of the week, time of the year, holidays, ...).

Continuous features are standardized by substracting the training-set

mean and divided by the standard-deviation.
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Price preprocessing

• A plethora of variance stabilizing transforms (VST) have been

implemented in SEPP [Uniejewski et al., 2017]:

• mlog

• polynomial

• PIT

• Experiments showed that depending on which VST is used, the

results in terms of MAE and RMSE vary a lot.

• PIT was better overall, but worse in highly volatile situations.

• No transform was worse overall, but better predicted spikes.

• With the frequency of negative prices (almost daily) are the

standard VST suitable ?

• Expert aggregation of experts using different VST has showed to be

beneficial both for MAE and RMSE. However benefits in terms of

battery PnL are less clear.
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Visualization of the data
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Visualization of the data (II)

(a) Gas price. (b) Load.
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Visualization of the data (III)

(c) Solar. (d) Wind.
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LEAR model

• One model is fitted for every instant h ∈ {1, 2, . . . , 24}:

pd,h = γ +
24∑
j=1

βd−1
j pd−1,j +

24∑
j=1

βd−7
j pd−1,j + βGpGd−1 + β pd−1+

β p
d−1

+
24∑
j=1

βL
j L̂d−1,j +

24∑
j=1

βS
j Ŝd−1,j +

24∑
j=1

βW
j Ŵd−1,j+

7∑
k=1

βDoW
k 1(DoWd = k) + βHol IsHolidayd + εd,h (1)

• Model (1) is learned with the R library Glmnet.

• We consider the standard LASSO model (elastic net α = 1). Penalty

λ is obtained through cross-validation.

• Variant of (1) using GAM (Generalized Additive Models) were

implemented with mgcv [Wood, 2017], but without improvement so

far.
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XGBoost and Random Forest

• Single model fitted with instant as variable

• Learned with the xgboost and ranger librairies.

• Hyperparameters were fixed a while ago on a hold-out set. However

probably outdated.

• Interestingly enough, ”vectorizing” the data (e.g. with previous day

pd−1,h for all instant) does not significantly enhance the predictions.
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Configuration of models within SEPP

The user can define as many experts as they want in a JSON file. These

models can be different for each node, market, etc...

Model name RF Long Term RF Short Term LASSO

Model type RF RF Glmnet

Days of data 730 100 120

VST Log None None

Pivot ? No Yes Yes

Quantiles [0.01, 0.79, 0.99] None -

Thresholding [−10, 600] [−1000, 9999] [0, 500]

Hyperparams
mtry=3 mtry=5 -

max.depth=8 max.depth=5 -

Features - - load, gas˙price
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Expert Aggregation



Motivation

• Individual predictors may have specific strengths and weaknesses, be

good at certain moments and bad at others.

• The goal of expert aggregation is to achieve a more robust

prediction by combining the individual predictors.

• Two types of aggregation methods are implemented in SEPP:

• OPERA (Online Prediction by ExpeRt Aggregation): weights w
(i)
t

are computed each instant sequentially:

p̂t = w
(1)
t p̂

(1)
t + w

(2)
t p̂

(2)
t + · · ·+ w

(K)
t p̂

(K)
t

• Stacking: a meta-model combine the experts according to feature

values:

p̂t = f (p̂
(1)
t , . . . , p̂

(K)
t , xt,1, . . . , xt,d).
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OPERA algorithm

• OPERA (Online Prediction by ExpeRt Aggregation)

[Gaillard and Goude, 2016] computes weights w
(k)
t according to the

errors (ML-poly algorithm):∑
t ℓ(yt , ŷ

(k)
t )∑K

j=1

∑
t ℓ(yt , ŷ

(j)
t )

• OPERA works both for pointwise forecast (the mean) and quantile

forecast.
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Stacking

• Difference in expert performance can also be explained by sensibility

to covariates.

• OPERA is unable to directly take advantage of those ⇒ model that

includes the covariates in the aggregation.

• The idea of stacking is to have a meta model trained jointly on the

experts and the features:

p̂t = f (p
(1)
t , . . . , p

(K)
t , xt,1, . . . , xt,d)

• SEPP has a simple random forest acting a stacking model.
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Results for California



Backtesting procedure

• We applied the SEPP framework for day-ahead price prediction for

the year 2023.

• Training period might differ for each model (between 60 days and 2

years).

• Models are re-trained weekly every Sunday morning.

• Evaluation metrics will be MAE (mean absolute error), RMSE (root

mean squared error) and battery PnL.

• Previous experiments as well as literature [Serafin and Weron, 2024]

show that high performance in MAE/RMSE might not translate into

best PnL.
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Prediction visualization
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Results for regular metrics

Main evaluation metrics are mean absolute error and root mean squared

error:

MAE =
1

24d

∑
d

24∑
h=1

|pd,h − p̂d,h| (2)

RMSE =

Ã
1

24d

∑
d

24∑
h=1

(pd,h − p̂d,h)2 (3)

Model MAE RMSE

Persistence 12.1 28.8

LEAR short 18.7 97.6

LEAR long 37.9 471

XGBoost 10.3 24.5

RF 11.7 26.8

Aggreg 9.51 24.6

(e) Whole 2023.

Model MAE RMSE

Persistence 18.4 26.2

LEAR short 15.2 20.5

LEAR long 13.5 17.7

XGBoost 13.8 20.3

RF 16.1 23.9

Aggreg 11.8 16.3

(f) Jan to Mar 2023. 20/33



Weekly mean absolute error
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BigBeau BESS characteristics

BigBeau BESS specs:

• Capacity of 140MWh

• Charge and discharge

rate of 35MW

• Efficiency of 88%

• Daily mileage: 280MWh

(one round-trip)

• Cycle cost of 4000$.

Hypothesis: bids are always

accepted.
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PnL for a battery on the day-ahead market

PnL is computed similarly to [Serafin and Weron, 2024]. For each day d :

1. A matrix of spreads is computed as:

∆p̂di,j = p̂d,j − p̂d,i , for i < j

2. For a given trade threshold τ , if there exists a pair (i , j) such that:

∆p̂di,j > τ

select the charge-discharge pair (i , j) that maximizes the spread:

(i , j) = argmax
i<j

∆p̂di,j

3. Update the mileage and set ∆p̂di,j ← −∞.

4. Repeat the process while the mileage limit is not reached and there

exists a pair (i , j) such that:

∆p̂di,j > τ.

5. The PnL over the period is then simply
∑

psell ×Vsell − pbuy ×Vbuy .
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PnL of the different models
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Example of actions (threshold = 0)
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PnL for the Worms2403 battery

C = 1MWh, P = 1MW, 1 daily cycle, cycle cost of 100$.
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Interpretability of the LEAR

We can analyze the coefficients of model (1) to interpret the impact on

the prediction.
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Figure 1: Coefficients of pd−1,h.
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Figure 2: Coefficients of Ŝd,h.

27/33



Conclusion & Future research



Conclusion

• The R library SEPP is used operationally by EDF Renewables North

America as an input of their Market Optimization Engine to derive

bid-offer curves.

• SEPP is capable of producing predictions for every node in California

and Texas, but also for France.

• SEPP produces an ensemble of experts using standard statistics /

ML models.

• Expert aggregation enhances the precision in terms of MAE, RMSE

and PnL to a certain extent. However models with lower

MAE/RMSE aren’t necessarily better in PnL.

28/33



Future work

• Online optimization of hyperparameters.

• Direct optimization of models to maximize battery PnL (neural net

optimized on genetic algorithms for instance ?).

• Inclusion of weather, load or generation scenarios for both point and

probabilistic forecasts.

• Prediction spread matrix instead of simple price prediction

[Serafin and Weron, 2024].

• Day-ahead / Real-time (DART) spread for market arbitrage.
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Thank you for your attention !
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Probabilistic Additive Stacking

• Work with the University of Bristol

[Capezza et al., 2021, Enticott and Fasiolo, 2025].

• Stacking meta-model is taken as:

p(yi |xi ) =
K∑

k=1

αk(xi )pk(yi |xi ) (4)

• In (4) the most common form chosen for the αk(x) is:

αk(x) =
exp
Ä
ηk(x)

ä
∑K

j=1 exp
Ä
ηj(x)

ä
where the exp

Ä
ηk(x)

ä
are based on a GAM [Wood, 2017].

• Hence the idea is to have models with heigher weight for certain

market conditions (high gas prices, high / low penetration of

renewables, etc...).

• The model is then learned by MLE.

• R library Gamstacker currently in development. 33/33
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